• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

多変数複素解析学の研究

Research Project

Project/Area Number 05640214
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionOsaka Prefecture University

Principal Investigator

阪井 章  大阪府立大学, 工学部, 教授 (70029627)

Co-Investigator(Kenkyū-buntansha) 宮崎 倫子  大阪府立大学, 工学部, 助手 (40244660)
狩野 裕  大阪府立大学, 工学部, 講師 (20201436)
原 惟行  大阪府立大学, 工学部, 助教授 (20029565)
早川 款達郎  大阪府立大学, 工学部, 教授 (10028201)
長尾 壽夫  大阪府立大学, 工学部, 教授 (80033869)
Project Period (FY) 1993
Project Status Completed (Fiscal Year 1993)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1993: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywords一様近似 / 正則関数 / 擬凸領域 / 多項式凸性 / totally real set / CR関 / 関数環 / peak interpolation set
Research Abstract

今年度は、多変数の複素解析のうち、とくに近似の問題とpeak setの問題を主として研究した。また、
近似の問題ではCarleman型の問題について研究し、次の結果を得た。1.R^nに関して対称な擬凸領域をGとするとき、R^nの開集合U=G∩R^nで連続な関数をGで正則な関数で一様近似できることを示した。Carlemanのswelling methodと関数環のanti‐symmetric setの方法を組み合わせたものである。2.C^nのtotally real set上の連続関数の整関数による一様近似について、近似可能条件である集合の定義関数のLevi‐formに関する条件を改良した。3.KがC^nの多項式凸なコンパクト集合の場合に、R^n×K上のCR関数の正則近似定理を証明した。swelling methodの他にGaussの関数の積分による方法も可能であることを示した。さらにKがコンパクトでない場合についても調べて、とくに、R^n×C^n場合には一般に近似不可能であることを示し、与えられたCR関数の満たすべき条件を導いた。4.C^nの多項式凸なtotally real set上の整関数による近似の可能性についての1つの条件を得た。これらの結果はそれぞれ論文として発表する予定である。
peak setの問題では、とくにpeak‐interpolation setについて研究した。滑らかな境界をもつ領域GについてはA^1(G)peak interpolation setが有限集合であることが知られているが、境界が滑らかでない場合、たとえば滑らかな境界をもつ強擬凸領域の共通部分のような場合には、有限でないpeak interpolation setが存在し得ることを示し、また、有限でないpeak interpolation setが存在するための一般的な条件を与えた。この結果は論文として発表の予定である。
近似の問題については一般のCR関数の大域的な近似の問題が、またpeak setの問題については、弱擬凸領域についての問題が今後の課題である。

Report

(1 results)
  • 1993 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] A.Sakai M.Ikehara: "Holomorphic approximation on open subsets of R^n" Proceedings of Royal Irish Academy. (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] A.Sakai: "Holomorphic and harmonic approximation on closed sets" Proceedings of the First Korean Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis. 1. 127-130 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] T.Hara: "On the Vinograd type theorem for Lienard system" Nonlinear Analysis. 20. 647-658 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] T.Hara: "Volterra integro‐differential inequality and boundedness criteria" Proceedigs of the International Conference on Differential Equations. 2. 593-597 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] T.Hara R.Miyazaki: "Equivalent condition for stability of a Volterra intgro‐differential equation" J.Math.Ann.Appl.174. 298-316 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] H.Nagao: "Asymtotic expansions of some test criteria for spherical test of independence under local alteratives from an elliptical distrbution" Math.Japonica. 38. 165-170 (1993)

    • Related Report
      1993 Annual Research Report

URL: 

Published: 1993-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi