• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Stydy of Noulineer Data Analysis by Using Connectinonist Model

Research Project

Project/Area Number 05808028
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionIbaraki University

Principal Investigator

YONEKURA Tatsuhiro  Ibaraki Univ.Faculty of Eng.Assoc.Prof., 工学部, 助教授 (70240372)

Project Period (FY) 1993 – 1994
Project Status Completed (Fiscal Year 1994)
Budget Amount *help
¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1994: ¥300,000 (Direct Cost: ¥300,000)
Fiscal Year 1993: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsMultilayr Neural Network / Noulinear Mapping / Multivariate data analysis / Differential Geometry / Geometrical Property / Mapping Feature Density (MFD) / Global Curvature / Mapping Capacity / 多変量解析 / 写像特徴密度 / 多次元データ解析 / 全曲率 / 汎化能力
Research Abstract

This research is to analyze the properties of nonlinear mapping model (e.g.Multilayr Neural Network) in conjunction with number of parameters in the model.and to establish funda mental methodology of statistical data analysis in nonlinear framework. In order to do this.differential geometrical feature of nonlinear mapping is defined and utilized for expansion of multivariate data analysis such as.discriminant analysis and function approximation for regression analysis. In the course of research.more significant and general concept is introduced called "Mapping's Feature Density" which.over the boundary of differential geometry.can express various geometrical properties.by expanding the above concept of differential geometrical feature.
Summary of the whole content resulted by the research are ;
1. Introduction of Mapping Feature Density
In nonlinear mappings.considering a certain countable quantity representing the geometrical property of a manifold spanned in the output space of a mappin … More g.the "mapping capacity" of a model (i.e.family of mappings) is.in a sense.indicated by a histogram which is generated by accumulating the above quantity varying the parameters contained in a model over the whole parameter space.This histogram or the density function is called Mapping Feature Density (MFD). By comparing MFD of several mapping model in terms of Kullbach's divergence.geometrical similarity can also be estimated.
2. Function approximation and MFD
When a global curvature.integrated value of absolute curvature over the curve.is used as an above quantity.the MFD can evaluate capability of function approximation of one-input one-output neural networks.It is expected that the mapping capacity becomes larger by increasing the number of hidden units.which is confirmed by both of theoretical and experimental means.MFD of the polynomial function with n'th order also has the same tendency in terms of the order n.Some remarkable conclusions are derived by comparing these two sets of MFD.
3. Discriminant analysis and MFD
The above global curvature is used as the quantity of MFD for application of estimation of the geometrical complexity of a boundary between two categories in the feature space.this is involved in a problem of nonlinear discriminant analysis.Assuming that each category contains several "cores", each of which consists of a Gaussian distribution.MFD of space-to-category mapping is a function of number of cores and dimension (of feature space). The same tendency is obtained as for three layr Perceptrons in terms of number of hidden units.By using this, some remarkable conclusions are derived by comparing these two sets of MFD.The result can be applied for estimation of the optimal model in problem of nonlinear discrimination. Less

Report

(3 results)
  • 1994 Annual Research Report   Final Research Report Summary
  • 1993 Annual Research Report
  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] T,Yonekura: "Piecewise Linear Factor analysis by Four Layer Neural Networks and Its Application for Modeling the Partial Discharge Data" Proc,2nd ANNPS(IEEE). 1. 475-480 (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] 松本 哲也: "幾何学的観点から見た多層パーセプトロンの能力評価" 電子情報通信学会技術報告. NC93-38. 57-62 (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] T.Matumoto: "Evaluation of the capability of Multilayer Pirceptton Using Total Curvature of Hypersurface in the Output Space" Proc.IJCNN '93(IEEE&INNS). 2of3. 1443-1446 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] 根本 正清: "判別関数を用いたカテゴリ間境界の微分幾何学的性質に関する一考察" 電子情報通信学会技術報告. PRU94-99. 1-8 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] 根本 正清: "写像の幾何学的特徴を用いた非線形モデルの関数近似能力評価法の提案" 電子情報通信学会春季全国大会論文集. D29. 30-31 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] M.Nemoto: "A Study on Relationship Between Gesmetrical Property of Nonlinear Mapping and Its Capability" Master's Thesis,Graduate School of Engineering Ibaraki University. (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] T.Yonekura: ""Piecewise Linear Factor Analysis by Four Layr Neural Networks and Its Aplication for Modeling the Partial Discharge Data"" Proc.2nd ANNPS (IEEE). 1. 475-480 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] T.Matsumoto: ""Evaluation of the Capability of Multilayr Perceptron by Its Geometrical Properties"" Tech.Rep.IEICE.NC93-38. 57-62 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] T.Matsumoto: ""Evaluation of the Capability of Multilayr Perceptron Using Total Curvature of Hypersurface in the Output Space"" Proc.IJCNN'93 (IEEE&INNS). 2of3. 1443-1446 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] M.Nemoto: ""On Differential Geometrical Properties of Boundary Between Categories with Discriminant Function"" Tech.Rep.IEICE.PRU94-19. 1-8 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] M.Nemoto: ""A Proposal of Estimation Method with Respect to Capability of Approximation of Function for Nonlinear Mathematical Model Using Geometrical Feature of Mapping"" Proc.General Conf.IEICE. D-29. 30-31 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] M.Nemoto: ""A Study on Relationship Between Geometrical Property of Nonlinear Mapping and Its Capability"" Master's Thesis, Graduate Course of Eug.Ibaraki Univ.(1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Tatsuhiro Yonekura: "Piecewise Linear Factor Analysis by Four Layer Neural Nets and Its Application for Modeling the Partial Dischorge Data" Proc.2nd Iut'l Forum on Appl.of Neural Net Power Systems(IEEE). 1of1. 475-480 (1993)

    • Related Report
      1994 Annual Research Report
  • [Publications] 松本哲也: "幾何学的観点から見た多層パーセプトロンの能力評価" 電子情報通信学会 技術報告. NC93-38. 57-62 (1993)

    • Related Report
      1994 Annual Research Report
  • [Publications] Tetsuya Matsumoto: "Evaluation of the Capability of Multilayer Perceptrou Using Total Curvature of Hypersurface in the Output Space" Proc.Iut'l Joint Conf.on Neural Nets 1993(INNS&IEEE). 2of3. 1443-1446 (1993)

    • Related Report
      1994 Annual Research Report
  • [Publications] 根本正清: "判別関数を用いたカテゴリ間境界の微分幾何学的性質に関する一考察" 電子情報通信学会 技術報告. PRU94-19. 1-8 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] Masakiyo Nemoto: "A Study on Relationship Between Geometrical Property of Noulinear Mappiug & Its Capability" 平成6年度修士学位論文(茨城大学大学院工学研究科審査済). (1995)

    • Related Report
      1994 Annual Research Report
  • [Publications] 根本正清: "写像の幾何学的特徴を用いた非線形モデルの関数近似能力評価法の提案" 電子情報通信学会 春季全国大会. D-29. (1995)

    • Related Report
      1994 Annual Research Report
  • [Publications] Tatsuhiro Yonekura: "Piecewise Lineer Factor Analysis by Four Layer Neural Nets and Its Application for Modeling the Pavtial Discharge Data" Proc.2nd Int'l Forum on Appl.of Neural Net Power Systems(IEEE). 1. PP.475-480 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] 松本哲也: "幾何学的観点から見た多層パーセプトロンの能力評価" 電子情報通信学会 技術報告. NC93-38. PP.57-62 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] Tetsuya Matsumoto: "Evaluation of the Capability of Muttilayar Peroeptron Using Total Cuvvature of Hypersurface in the Output Space" Proc.Iut'l Joint Couf.on Neural Nets 1993(INNS & IEEE). 2. PP.1443-1446 (1993)

    • Related Report
      1993 Annual Research Report

URL: 

Published: 1993-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi