• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

代数曲線の塔に付随するコホモロジー群と保型形式

Research Project

Project/Area Number 06640078
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionTokai University

Principal Investigator

太田 雅己  東海大学, 理学部, 教授 (40025490)

Co-Investigator(Kenkyū-buntansha) 土井 誠  東海大学, 理学部, 助教授 (20049729)
堀江 邦明  東海大学, 理学部, 助教授 (20201759)
田中 実  東海大学, 理学部, 教授 (10112773)
杉田 公生  東海大学, 理学部, 教授 (60056083)
草場 公邦  東海大学, 理学部, 教授 (20087076)
Project Period (FY) 1994
Project Status Completed (Fiscal Year 1994)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1994: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywords代数曲線 / モジュラー曲線 / エタール・コホモロジー群 / 保型形式 / p-進ホッジ構造
Research Abstract

代数曲線,特に楕円モジュラー曲線の塔に付随するp-進コホモロジー群の構造の研究を,昨年度迄に得られた結果をふまえた上で継続した.今年度は特に,楕円モジュラー曲線の塔の1次元パラボリック・コホモロジー群のp-進ホッジ構造の研究を主眼とし,次の成果を得た.
素数p(【greater than or equal】5)と正整数Nを固定する時,“レヴェルNのp-進アイヒラ-・志村コホモロジー群"ES_p(N)Z_pが以前の研究により導入されていた.この群は個々のレヴェル(N×(pのべき))と重さk(【greater than or equal】2)の楕円カスプ形式に付随するコホモロジー群への“特殊化写像"をもつ巨大な群である.我々の研究対象はその(通常部分の)部分群e^*′ES_p(N)Z_pである.A_∞をe^*′ES_p(N)Z_pのpでの惰性群による不変部分とし,B_∞=e^*′ES_p(N)Z_p/A_∞とおく.Kを十分大きなC_pの部分体,oをその整数環とする.得られた結果は次のものである.
・B_∞【cross product】^^∧Z_poから或るΛ-進カスプ形式(カスプ形式のp-進族)の空間への標準的な同型写像が構成できる.
A_∞とB_∞の間に標準的な双対性がある.
この結果を“特殊化"する事により,個々のレヴェルと重さに対応するコホモロジー群が良いp-進ホッジ構造をもつ事がわかるが,上記二点はそれらのp-進ホッジ構造をp-進的に補間した普遍的なものと看做せる.
この研究の本来の動機は,カスプ形式のp-進族に付随するp-進L-関数の理論への応用であった.今後の課題の第一はそれであるが,他に上記理論をアイゼンシュタイン級数のp-進族を含む形に一般化する事も重要な問題であると思われる.

Report

(1 results)
  • 1994 Annual Research Report
  • Research Products

    (7 results)

All Other

All Publications (7 results)

  • [Publications] Masami Ohta: "On the p-adic Eichler-shimura isomorphism for Λ-adic cusp forms" J.fur die Reive und angewandte Math.(to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] 杉田公生,他: "図形による仕様記述の方法とその支援システム" 情報処理学会第50回全国大会論文集. (to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] Minoru Tanaka: "Cut loci and distance spheres on Alexandrov surfaces." Asterisque. (to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] Kuniaki Horie: "On CM-fields with the same maximal real subfield." Acta Arithmetica. 67. 219-227 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] K.Horie and M.Horie: "On the 2-class groups of cyclotomic fields whose maximal real subfields have odd class numbers." Proc.Amer.Math.Soc.(to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] Makoto Doi: "Expected total costs for a storage process." 東海大学理学部紀要. 30. 25-35 (1995)

    • Related Report
      1994 Annual Research Report
  • [Publications] 渡辺敬一,草場公邦: "代数の世界" 朝倉書店, 289 (1994)

    • Related Report
      1994 Annual Research Report

URL: 

Published: 1994-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi