• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topological invariants related to field theory

Research Project

Project/Area Number 06640111
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

KOHNO Toshitake  Graduate School of Mathematical Sciences, The University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (80144111)

Co-Investigator(Kenkyū-buntansha) KATO Akishi  Graduate School of Mathematical Sciences, The University of Tokyo, Associate Pro, 大学院・数理科学研究科, 助教授 (10211848)
NOUMI Masatoshi  Graduate School of Mathematical Sciences, The University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (80164672)
KATSURA Toshiyuki  Graduate School of Mathematical Sciences, The University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (40108444)
Project Period (FY) 1994 – 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1995: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1994: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordstopological field theory / conformal field theory / braid group / moduli space / Chern-Simons theory / Witten invariants / Vassiliev invariants / Feynman diagrams / バシリエフ不変量 / 3次元多様体 / ファイマンダイアグラム
Research Abstract

Applying techniques of field theory in mathematical physics, we establishes a general framework to extract topological invariants of manifolds from infinite dimensional data.
In late 80's Witten proposed a method to define topological invariants of 3-manifolds as the partition function of the Chern-Simons functional defined over the space of connections on the manifold. We clarified the relation between the Chern-Simons theory for 3-manifolds with boundary and the two-dimensional conformal field theory. We formulated the conformal field theory as the theory of connections on vector bundles over the moduli space of Riemann surfaces and expressed the Witten invariants by the holonomy of the connection. Moreover, from the above point of view we obtained lower estimates for classical invariants for knots and 3-manifolds.
The critical points of the Chern-Simons functional are flat connections and it is known that the perturbative expansion at flat connections are described by Feynman diagrams. We investigated topological invariants arising from such perturbative expansion from the viewpoint of integral geometry-integral of Green forms on the configuration space. Motivated by Chern-Simons perturbative theory for 3-manifolds with boundary, we studied the space of chord diagrams on Riemann surfaces and its quantization, together with the symplectic geometry of the moduli space of flat connections. In particular, in the case of the torus, we investigated the holonomy of the elliptic KZ connection and defined Vassiliev type invariants for knots in the product of the torus and the unit inverval.

Report

(3 results)
  • 1995 Annual Research Report   Final Research Report Summary
  • 1994 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] T. Kohno: "Tunnel numbers of knots and gones-Witten invariants" Advanced Series in Math. Phys.17. 275-293 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T. Kohno: "Vassiliev invariants and de Rham complex on the space of knots" Contemporary Mathemahis. 179. 123-138 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T. Kohno: "Topological invariants for 3-manifolds using repreeutahions of inapping class groups II" Contemporary Mathemahis. 175. 193-217 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T. Kohno T. Takata: "Level-rank duality of Witten's 3-manifold invariants" Advanced Stud. in Pure Marh.24. (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T. Katsura: "Multicanonical system of elliptic surfaces in small sharacteristics" Compositio Math.97. 119-134 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] 加藤晃史: "量子群と1次元量子スピン系" 数理科学. 34. 11-18 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.Kohno: "Tunnel numbers of knots and Jones-Witten invariants" Advanced Series in Math.Phys.17. 275-293 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.Kohno: "Vassiliev invariants and de Rham complex on the space of knots" Contemp.Math.179. 123-138 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.Kohno: "Topological invariants for 3-manifolds using representations of mapping class groups II" Contemp.Math.175. 193-217 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.Kohno and T.Takata: "Level-rank duality of Witten's 3-manifold invariants, Advanced Stud." in Pure Math.24. (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.Katsura: "Multicanonical system of elliptic surfaces in small characteristics" Compositio Math.97. 119-134 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] A.Kato: "Quantum groups and one-dimensional quantum spin systems (in Japanese)" Surikagaku. 34. 11-18 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1995 Final Research Report Summary
  • [Publications] T.kohno: "Topological invariants of 3-manifolds using representations of mapping class groupsII" Contemporary Mathematics. 175. 193-217 (1994)

    • Related Report
      1995 Annual Research Report
  • [Publications] T.kohno: "Vassiliev invariants and de Rhain complex on the space of knots" Contemporary Mathematics. 179. 123-138 (1994)

    • Related Report
      1995 Annual Research Report
  • [Publications] T.Kohno and T.Takata: "Level-rank duality of Witten's 3-manifold invariants" Advanced Studies in Pure Mthematics. 24. (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] T.Katura: "Multicanonial systems of elliptic Dorfaces in small characteristic" Compositio Mathi. 97. 119-134 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] 加藤晃史: "量子群と1次元量子スピン系" 数理科学. 34. 11-18 (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] T.Kohno: "Tunnel numbers of Knots and Jones-Witten invariants" Advanced Series in Mathematical Physics. 17. 275-293 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] T.Kohno: "Vassiliev invariants and de Rham complex on the space of Knots" Contemporary Mathematics. (1995)

    • Related Report
      1994 Annual Research Report

URL: 

Published: 1994-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi