• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

非線形現象に関連した非線形偏微分方程式における解の特異性の生成とその性質

Research Project

Project/Area Number 06640205
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionThe University of Tokyo

Principal Investigator

堤 誉志雄  東京大学, 大学院数理科学研究科, 助教授 (10180027)

Co-Investigator(Kenkyū-buntansha) 小松 彦三郎  東京大学, 大学院数理科学研究科, 教授 (40011473)
石村 直之  東京大学, 大学院数理科学研究科, 助手 (80212934)
山田 道夫  東京大学, 大学院数理科学研究科, 助教授 (90166736)
片岡 清臣  東京大学, 大学院数理科学研究科, 助教授 (60107688)
俣野 博  東京大学, 大学院数理科学研究科, 教授 (40126165)
Project Period (FY) 1994
Project Status Completed (Fiscal Year 1994)
Keywords非線形シュレデインガー方程式 / 非可積分系 / 非線形散乱理論 / ヌル条件 / ゲージ不変性 / バーガース方程式 / 非圧縮性ナヴィエ・ストークス方程式 / 乱流
Research Abstract

非線形偏微分方程式において、解の特異性が非線形性によってどのような相互作用をするのかということを調べるのは、極めて重要な問題の一つである。それは、解の時間大域的存在や有限時刻での爆発の問題と密接に関連している。空間1次元の特殊な3次の非線形性を持つ非線形シュレデインガー方程式は完全可積分系となり、その解は時刻無限大でも非線形効果が消えず、解は摂動を受けていない自由解には近付かないことが知られている。空間1次元の場合、3次の非線形性は線形散乱理論で云うところの長距離ポテンシャルに相当しており、この事実自体は自然なことである。しかし最近、非線形波動方程式について、従来長距離ポテンシャルに相当すると考えられていた場合でも、ある特別な非線形項に対しては解の特異性が相殺し、時刻無限大で解は自由解に近付くことが分かってきた。非線形シュレデインガー方程式に対しても、特別な非線形項の場合は波動方程式の時と同様、解の特異性が相殺し時刻無限大で非線形効果が消えることが予想される。そこで、今年度は、どのような3次の非線形項に対して、解の特異性が相殺し時刻無限大で解が自由解に近付くかを調べた。
また、最近は、単に理論的に解析するだけではなく、数値計算によって偏微分方程式を調べるということも、応用上重要な問題となっている。今回非圧縮性ナヴィエ・ストークス方程式の分岐問題について装置実験を行い、2次分岐の発生やカタストロフ理論におけるカスプ点に相当するものが存在することを捕らえた。このような数値解析が、ナヴィエ・ストークス方程式の解の正則性や特異性の解析に役立つことが期待される。

Report

(1 results)
  • 1994 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] 堤誉志雄: "The null gauge condition and the one dimensional nonlinear Schrodinger equation with cubic nonlinearity" Indiana Univ.Math.J.43. 241-254 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] 片山聡一郎: "Global existence of solutions for nonlinear Schrodinger equations in one space dimension" Comm.Part.Diff.Eqns.19. 1971-1997 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] C.M.Elliott,H.Matano and T.Qi: "Zeros of a complex Ginzburg-Landan order parameter with applications to superconductivity" European Journal of Applied Mathematics. 5. 431-448 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] Naoyuki Ishimura: "On the simplified magnetic Benard problem" Adv.Math.Sci.Appl.4. 241-247 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] 片岡清臣: "Microlocal Analysis of Boundary Value Problems with regular singularities" 数理解析研究所講究録「超局所解析と漸近解析」. (1995)

    • Related Report
      1994 Annual Research Report
  • [Publications] K.Sato,M.Yamada: "Vertical Strueture of Atmospheric Gravity Waves Revealed by Wavelet Analysis" J.Geophys Res.99. 20623-60631 (1994)

    • Related Report
      1994 Annual Research Report

URL: 

Published: 1996-04-08   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi