Project/Area Number |
06660375
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic veterinary science/Basic zootechnical science
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
TAYA Kazuyoshi Tokyo University of Agriculture and Technology, Faculty of Agriculture, Professor, 農学部, 教授 (60092491)
|
Project Period (FY) |
1994 – 1996
|
Project Status |
Completed (Fiscal Year 1996)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1996: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1995: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1994: ¥1,300,000 (Direct Cost: ¥1,300,000)
|
Keywords | Rat / stress / Thyroid gland / Adrenal gland / Ovary / Prolactin / ACTH / Gonadotropin / 性腺 / 甲状腺刺激ホルモン放出ホルモン(TRH) |
Research Abstract |
The functional relationship between thyroid, adrenal and gonadal hormones was investigated using adult male rats. Hypothyroidism was produced by the administration of 4-methy1-2-thiouracil (thiouracil) in the drinking water for 2 weeks. Plasma concentrations of TSH dramatically increased, whereas plasma concentrations of tri-iodothyronine and thyroxine decreased in thiouracil-treated rats as compared with euthyroid rats. Hypothyroidism increased basal levels of plasma ACTH and pituitary content of ACTH.The pituitary responsiveness to CRH for ACTH release markedly increased, whereas the adrenal responsiveness to ACTH for corticosterone release decreased. These results indicated that hypothyroidism causes adrenal dysfunction in adult male rats. Pituitary contents of LH and prolactin decreased in hypothyroid rats as compared with euthyroid rats. In addition, hypothyroidism lowered pituitary LH responsiveness to LHRH. Testicular responsiveness to human chorionic gonadotrophin for testosterone release, however, was not different between euthyroid and hypothyroid animals. These results indicated that hypothyroidism causes adrenal dysfunction and results in hypersecretion of ACTH from the pituitary gland. Adrenal dysfunction may contribute to the inhibition of LHRH secretion from the hypothalamus, possibly mediated by excess CRH.
|