• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Fourier multiplier by operating functions on function spaces

Research Project

Project/Area Number 06804010
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionNiigata University (1995-1996)
Tokyo Medical University (1994)

Principal Investigator

HATORI Osamu  Niigata University Griduate School of Science and Technology Associate Professor, 自然科学研究科, 助教授 (70156363)

Project Period (FY) 1994 – 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 1996: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1995: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1994: ¥400,000 (Direct Cost: ¥400,000)
Keywordscommutative Banach algebra / multiplier / operating function / function space / locally compact abelian group / Wiener-Pitt phenomenum / L^P-multiplier / 極大イデアル空間 / locallycompact abelian group / regular Banach algebra / decomposable operator / natural spectrum
Research Abstract

In this research I study Fourier multiplier on locally compact abelian groups G.The maximal ideal space of p-q multplier on a comact abelian group is identified. In particular, I proved that the dual group of G is dense in the maximal ideal space, henceforce naturality of sspectra of p-q multiplier is proved. The operating functions of p-2 multplier is also identified. Let C_0M_p (G) denote the algebra of L^p-multiplier whose Fourier transforms vanish at infinity. I proved that the Apostol algebra coincides with the greatest regular closed subalgebra RegC_0M_p (G) and they are maximal, in a sense, in C_0M_p (G). The proof depends on the general results concerning abstract algebras of continuous functions which are modeled after Fourier multipliers. I also proved that if the maximal ideal space of the algebra in thin, they the greatest regular closed subalgebra coincides with the set of functions with natural spectra. Laursen and Neumann proved that if p=1 or G is compact, then RegC_0M_p (G) is the closed ideal C_<00>M_p (G) which consists of multplier whose Gelfand transforms vanish of the dual group of G.I proved that if p*1, then RegC_0M_p (R^n) is not an ideal of C_0M_p (R^n) and C_<00>M_p (R^n)= {0}. Let G be a non-discrete locally comapct abelian group. I prove that there exists a bounded regular Borel measure outside of the radical of L^1 (G) with a natural spectrum. In particular if G is not compact, then the Fourier-Stieltjes transform of the measure can be vanish at infinity on the dual group, which answers the question posed by Eschimier, Laursen and Neumann. I also study BSE-algebras.

Report

(4 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • 1995 Annual Research Report
  • 1994 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] 羽鳥理: "超分離性について" 東京医科大学紀要. 20. 1-5 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Does a non-Lipschitz function operate on a non-trivial Banach function algebra?" Tohoku Mathematical Journal. 46. 253-260 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Fredholm composition operators on spaces of holomorphic functions" Integral Equations and Operator Theory. 18. 202-210 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Functions which operate on algebras of Fourier multipliers" Tohoku Mathematical Journal. 47. 105-115 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "A characterization of lacunary sets and spectral properties of Faurier multipliers" Lecture Notes in Pure and Applied Mathematics. 172. 183-203 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L^P-multipliers whose Fourier transforms are continuous and vanish at infinity" Tokyo Journal of Mathematics. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] S.-E. Takahasi: "Commutative Banach algebras and BSE - norm" Mathematica Japonica. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Measures with natural spectra on locally compact abelian groups" Receedings of American Mathematical Society. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Aspects of ultraseparation" Bulletin of Tokyo Medical College. Vol.20. 1-5 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Does a non-Lipschitz function operate on a non-trivila Banach function algebra?" Tohoku Mathematical Journal. vol.46. 253-260 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Fredholm composition operators on spaces of holomorphic functions" Integral.Equations and Operator Theory. vol.18. 202-210 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Functions which operate on algebras of Fourier multipliers" Tohoku Mathematical Journal. vol.47. 105-115 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "A characterization of Lacunary sets and spectral properties of Fourier multipliers" Lecture Notes in Pure and Applied Mathematics. vol.172. 183-203 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L^p-multipliers whose Fourier transforms are continuous and vanish at infinity" Tokyo Journal of Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Sin-Ei Takahasi: "commutative Banach algegras and BSE-norm" Mathematica Japonica. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "Measures with natural spectra on locally compact abelian groups" Proceedings of American Hathematical Society. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Osamu Hatori: "On the greatest regular closed subalgebras and the Apostol algebras of L-^p-multipliers whose Fourier transforms are continuous and vauish" Tokyo Journal of Mathematics. (発表予定).

    • Related Report
      1996 Annual Research Report
  • [Publications] S.-E.Takahasi: "Commutative Banach algebras and BSE-norm" Mathematica Japonica. (発表予定).

    • Related Report
      1996 Annual Research Report
  • [Publications] Osamu Hatori: "Measures with natural spectra on locally compact abelian groups" Proceedings of American Mathematical Society. (発表予定).

    • Related Report
      1996 Annual Research Report
  • [Publications] O.Hatori: "A characterization of Lacunary sets and Spectrul properties of Fourier multipliers" Lecwre Notes in Pure and Applied Math.172. 183-203 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] 羽鳥 理: "Decomposable multiplication operatorsについて" 京都大学数理解析研究所講究録. (発表予定).

    • Related Report
      1995 Annual Research Report
  • [Publications] 羽鳥 理: "可換Banach環の最大正則部分環とApostol環について" 北海道大学数学講究録. (発表予定).

    • Related Report
      1995 Annual Research Report
  • [Publications] Osamu Hatori: "A characterization of lacunary sets and spectral properties of Fourier multipliek" Leceuve Notes in Pure and Appl.math.(発表予定).

    • Related Report
      1994 Annual Research Report

URL: 

Published: 1994-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi