Project/Area Number |
07280101
|
Research Category |
Grant-in-Aid for Scientific Research on Priority Areas
|
Allocation Type | Single-year Grants |
Research Institution | KYOTO UNIVERSITY (1996-1999) Nagoya University (1995) |
Principal Investigator |
GO Nobuhiro (1996-1999) Grad. Schi. Sci., Kyoto Univ., Professor, 大学院・理学研究科, 教授 (50011549)
野口 俊之 (1995) 名古屋大学, 理学部, 助教授 (90172775)
|
Co-Investigator(Kenkyū-buntansha) |
YURA Kei Nagoya Univ., Grad. Schi. Sci., Res. Assoc, 大学院・理学研究科, 助手 (50252226)
NISHIKAWA Ken Center for Info. Biol., Professor, 生命情報研究センター, 教授 (10093288)
WAKO Hiroshi Schl. Soc. Sci., Waseda Univ., Professor, 社会科学部, 教授 (60158607)
YOMO Tetsuya Grad. Schi. Eng., Osaka Univ., Res. Assoc., 大学院・工学研究科, 助手 (00222399)
ISHIMORI Koichiro Grad. Schi. Eng., Kyoto Univ., Assoc. Prof., 大学院・工学研究科, 助教授 (20192487)
美宅 茂樹 東京農工大学, 工学部, 教授 (10107542)
木寺 詔紀 京都大学, 大学院・理学研究科, 助教授 (00186280)
森島 績 京都大学, 大学院・工学研究科, 教授 (50026093)
熊谷 泉 東北大学, 工学部, 教授 (10161689)
梅山 秀明 北里大学, 薬学部, 教授 (20050619)
諏訪 牧子 東京農工大学, 工学部, 教務職員 (30242241)
郷 信広 京都大学, 大学院・理学研究科, 教授 (50011549)
|
Project Period (FY) |
1995 – 1999
|
Project Status |
Completed (Fiscal Year 1999)
|
Budget Amount *help |
¥340,200,000 (Direct Cost: ¥340,200,000)
Fiscal Year 1998: ¥43,400,000 (Direct Cost: ¥43,400,000)
Fiscal Year 1997: ¥60,900,000 (Direct Cost: ¥60,900,000)
Fiscal Year 1996: ¥112,400,000 (Direct Cost: ¥112,400,000)
Fiscal Year 1995: ¥123,500,000 (Direct Cost: ¥123,500,000)
|
Keywords | Protein / Three-dimensional structure / Principle of architecture / Structural comparison / Structural prediction / principal variety of protein folds / Threading / Module / スレッティング / 立体構造比較 / 立体構造予測 / 膜タンパク質 / ファージディスプレイ / キメラタンパク / リゾチウム / 蛋白質 / 構造分類 / モデリング / タンパク質デザイン / 相同蛋白質 / 膜蛋白質 |
Research Abstract |
Natural history group (Go, Yura, Wako, Nishikawa, Mitaku, and Umeyama) From a classification of the spatial arrangements of the secondary structure elements, Go discovered 'the symmetry rule', whish states that apair of similar protein folds, having no common ancestor, tend to possessan internal symmetry in their fold. Yura found two types of 'modules', a phosphate binding module observed commonly in polymerases and transcription factors, and a substrate-specificity determining module of peroxidases. A newly developed method for detecting similarity in the atomic level revealed a lot of similar ATP binding structures in totally different folds (Go). Wako developed an efficient algorithm of expressing the local environment by a code representation. A new secondary structure prediction method was developed by Nishikawa, who applied the threading method for this purpose. As for the structural prediction for membrane bound proteins, Mitaku improved his method to predict the structure of bacteriorhodopsin correctly. Umeyama established a fully automated algorithm of homology modeling, which is estimated to give a sufficient accuracy. Design group (Yomo and Ishimori) Yomo found in random mutagenesis experiments on catalase that the thermal stability and activity of the protein is extremely robust against mutations, and that a possibility of the functional optimization by the evolutional engineering technique can enormously enhanced by the elongation of the chain length. The concept of 'module' was applied to produce chimera hemoglobin, which was synthesized by exchanging its modules each other. From such chimera proteins, Ishimori confirmed that the structural unit, module, works not only as the unit of maintaining the protein stability, but also as a unit for realizing the function of hemoglobin.
|