Project/Area Number |
07304003
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 総合 |
Research Field |
Algebra
|
Research Institution | KYOTO UNIVERSITY |
Principal Investigator |
UENO Kenji Kyoto Univ., Math.Dept., Professor, 大学院理学研究科, 教授 (40011655)
|
Co-Investigator(Kenkyū-buntansha) |
KATSURA Toshiyuki Univ of Tokyo., Math.Dept., Professor, 大学院数理解科学研究科, 教授 (40108444)
MUKAI Shigeru Nagoya Univ., Math.Dept., Professor, 大学院多元数理科学研究科, 教授 (80115641)
NAMIKAWA Yukihiko Nagoya Univ., Math.Dept., Professor, 大学院多元数理科学研究科, 教授 (20022676)
JIMBO Michio Kyoto Univ., Math.Dept., Professor, 大学院理学研究科, 教授 (80109082)
MARUYAMA Masaki Kyoto Univ., Math.Dept., Professor, 大学院理学研究科, 教授 (50025459)
川又 雄二郎 東京大学, 大学院・数理科学研究科, 教授 (90126037)
|
Project Period (FY) |
1995 – 1996
|
Project Status |
Completed (Fiscal Year 1996)
|
Budget Amount *help |
¥5,700,000 (Direct Cost: ¥5,700,000)
Fiscal Year 1996: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 1995: ¥3,400,000 (Direct Cost: ¥3,400,000)
|
Keywords | moduli space / conformal field theory / conformalblock vector bundle / Calabi-Yaumanifold / pointed Riemannsurface / arithmeticgeometry / q-analog / 弦理論 / 代数曲線 / ベクトル束のモジュライ空間 / リーマン面のモジュライ空間 / 単純リイ代数 / ゲージ対称性 / KZ方程式 / 閉リーマン面 / 共形場ブロック / ベクトル束 / 楕円曲面 / 変形理論 |
Research Abstract |
Moduli spaces of algebraic varieties and vector bundles play am important role not only in algebraic geometry but also mathematical physics. We studied moduli spaces from the view point of mathematical physics. Ueno studied mainly conformal field theory which has deep relationship with moduli spaces of pointed Riemann surfaces. He showed that non-abelian conformal field theory, so called the WZW modelis defined overthe rational number field and even more it can be defined over a discrete valuation ring. With Y.Shimizu and T.Suzuki he also studied explicit description of protectively flat connection of the sheaf of conformal blocks. Maruyama showed a new method how to construct moduli sapce of stable sheaves on algebraic surfaces, which will play an important role to study boundaries of the moduli spaces. Mukai studied the moduli spaces of vector bundles on K3 surfaces and found interesting relationship with the moduli spaces of algebraic curves. Kawamata showed unobstractedness of deformations of Calabi-Yau manifolds by purely algebraic method. Katsura studied pluricanonical sytems of elliptic surfaces in positive characteristics and showed that they have similar properties as in characteristic O. In this way we found many interesting properties of moduli spaces and also showed deep relationship with mathematicalphysics.
|