• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

代数曲面の非有理次数の研究

Research Project

Project/Area Number 07640025
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionNiigata University

Principal Investigator

吉原 久夫  新潟大学, 理学部, 教授 (60114807)

Co-Investigator(Kenkyū-buntansha) 秋山 茂樹  新潟大学, 理学部, 助教授 (60212445)
竹内 照雄  新潟大学, 理学部, 助教授 (10018848)
関川 浩永  新潟大学, 理学部, 教授 (60018661)
渡部 剛  新潟大学, 理学部, 教授 (60018257)
Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1995: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywords非有理次数 / アーベル曲面 / 超楕円曲面 / 有理関数体
Research Abstract

2変数代数関数体についての,非有理次数を求めること,言い替えると,代数曲面Sについての非有理次数d_γ(S)を決定することが目的である。これまでのところ小平次元が負の無限大の曲面と幾つかのアーベル曲面だけしか判明していなかった。当該研究では小平次元が0のクラスのうち,特にアーベル曲面と超楕円曲面について研究した。
1.アーベル曲面AについてはすでにAが主偏極アーベル曲面の不分岐2重被覆となっていれば,d_γ(A)=3と判明していた。この他に大切な例として2つの楕円曲線の積A=E×Eであるときどうかということが問題であった。d_γ(A)=3であるための十分条件として,A上に種数3の非特異曲線が存在することという判定条件を示し,それを用いておよそ次に述べる成果を得た:Eが虚数乗法を持てばA=E×Eの非有理次数は3である。なおこの結果はAがいつ代数曲線のヤコビ多様体になるかという問題を,林田・西氏がA上に種数2の非特異曲線が存在するための条件として考察したが,それと同様な議論の結果得られたものである。
なお非有理次数が4以上の例を見つけようとしたが,今の所成功していない。今後の課題である。
2.超楕円曲面Sについてはd_γ(S)>2ということだけで詳しい値は分かっていなかった。この研究ではSが2つのファイバー空間の構造を持つことに注目し,それぞれのファイバーを用いて因子を作り,有理写像を考察することで非有理次数の評価を試みた。超楕円曲面は諏訪氏の分類表に基づいて,7種類に分類されるが,そのうちの2種はd_γ(S)=2他はd_γ(S)=3,4という成果が得られた。

Report

(1 results)
  • 1995 Annual Research Report
  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Hisao Yoshihara: "Degree of irrationality of a product of two elliptic curves" Proceedings of the American Mathematical Society.

    • Related Report
      1995 Annual Research Report
  • [Publications] Hisao Yoshihara: "On the degrees of irrationality of hyperelliptic surfaces" Proceedings of the Japan Academy.

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi