• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ナヴィエ・ストークス方程式の非線形関数解析的手法による研究

Research Project

Project/Area Number 07640257
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionTohoku University

Principal Investigator

増田 久弥  東北大学, 理学研究科, 教授 (10090523)

Co-Investigator(Kenkyū-buntansha) 高木 泉  東北大学, 理学研究科, 教授 (40154744)
猪狩 惺  東北大学, 理学研究科, 教授 (50004289)
加藤 順二  東北大学, 理学研究科, 教授 (80004290)
Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1995: ¥700,000 (Direct Cost: ¥700,000)
Keywords反応拡散系 / 関数方程式 / 周期解
Research Abstract

ナヴィエ・ストークス方程式の解位の時刻t→∞のときの漸近挙動,すなわち解の有界性,同期解の存在などを研究した。そのためのモデルとして,反応・拡散系,関数方程式を扱った。それぞれの方程式に対して,同期解の存在,解の有界性を考察した。反応・拡散系についていえば,次の通りである。ボルテラとロット力が生態系の個体数の変化を記述する方程式を1930年代提唱し,今日ロット力・ヴォルテラ型の微分方程式系といわれて,最も基本的なこの方面の式である。これを空間的偏在を考慮して,1980年代偏微分方程式系として扱うようになり,今日反応・拡散系といわれるようになって研究が活発になされている。自然のサイクルを記述するのに,この反応拡散系の周期解の存在を示すことが極めて大切である。今年度この反応・拡散系の周期解の存在を示すことに成功した。この手法で,ナヴィエ・ストークス方程式の解の周期性の研究を来年度すすめたい。さらに,今年度生物が3種,4種の場合を扱ったが,一般のm種の場合の研究も来年度すすめたい。さらに,遅れをもつ関数方程式の解の有界性も示すことができた。

Report

(1 results)
  • 1995 Annual Research Report
  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] K. MASUDA: "Periodie solution of some reaction-diflusion equation" Leactnre Notes in Nnan. and Appl. Analysis. 15. 115-122 (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] J. KATO: "Boundedmess in Functional Differential Equations" Lecture Note in Num. and Appl. Analysis. 15. 59-82 (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi