• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

非線形偏微分方程式の解の滑らかさ

Research Project

Project/Area Number 07640272
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionTokuyama Women's College

Principal Investigator

大河内 広子  徳山女子短期大学, 経営情報学科, 教授 (70194115)

Co-Investigator(Kenkyū-buntansha) 清水 眞  徳山女子短期大学, 経営情報学科, 助教授 (50270038)
Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1995: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordsanti-periodic Problem / 周期問題 / 劣微分作用素 / blow up
Research Abstract

次の2点を目的として研究した。
1.具体的な偏微分方程式でのanti-periodic problemについて、その解の滑らかさを調べること
2.劣微分作用素で表わされる非線形放物型方程式の解の初期時刻での挙動を、無条件連続性という範ちゅうで調べること
これらについて次の研究実績を得た.
1について anti-periodic problemは、従来多くの研究者によって研究されてきたperiodic problemに比べて、tについてのSupnormの評価を得易いという特徴がある.この特徴を用いて、1996年に共同研究の論文を発表したが、更に今後多くの方程式についてのanti-periodic problemを研究するための下準備を行った.
2について 実ヒルベルト空間内で定義された劣微分作用素∂qで表わされる非線形放物型方程式
▲du/dt+∂q(u(t))→O,t>O▼
の解uのt=Oの近傍での挙動を、無条件連続性という範ちゅうでとらえられるための十分条件として、ポテンシャル中のクラスを求めた.結果は、日本数学会秋期総合分科会などで口頭発表し、現在論文として執筆中である.また上で得られた条件を弱めると解が無条件連続でなくなる例を構成した。この結果も、別の論文として執筆する予定でいる.

Report

(1 results)
  • 1995 Annual Research Report
  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] M.Nakao: "Anti-Periodic solution for U_<tt>-(σ(Ux))_x-U_<xxt>=f(x_1t)" Journal of Mathematical Analysis and Applications. 197. 796-809 (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] 清水 眞: "On the Stability of nonlinear differentiable operators in Banach spaces" 徳山女子短期大学紀要. 4. 1-8 (1995)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi