• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Tunnel Effects in Field Theory and Asymptotic Behavior of Perturbation Theories

Research Project

Project/Area Number 07640391
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 素粒子・核・宇宙線
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

AOYAMA Hideaki  Kyoto University, Faculty of Integrated Human Studies, Associate Professor, 総合人間学部, 助教授 (40202501)

Project Period (FY) 1995 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1997: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1996: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1995: ¥800,000 (Direct Cost: ¥800,000)
KeywordsTunnel Effects / Perturbation Theory / Valley Method / Non-Perturbative Effects / Instanton / Bounce / Asymptotic Series / Field Theory / バレー・メソッド / 固有谷法 / 経路積分法 / 超対称性 / アシンプトン / 非摂動的効果
Research Abstract

This year, we made progress in the analysis of the structure of the quantum theories using the valley method. The imaginary-time path-integral method is known to be effective for the treatment of the tunneling phenomena. The well-known calculation utilizing instanton or bounce solutions, however, have various limitations. In order to overcome those, the team involving the present investigator has established the "valley method".
The one-dimensional asymmetric double-well potential model has been analyzed in detail this year, to yield the following results :
・The non-perturbative effects due to the tunneling can be incorporated by use of valley-instanton and valley-bounces.
・This effect can be completely separated from perturbative effect by an analytic continuation of the valley parameter. This analytic continuation at the same time allows calculation by using only the leading contribution of the interactions of the valley-instantons.
・This analysis shows that the singularity in the valley integration leads to the evaluation of the leading term of the non-Borcl-summable divergence in perturbation series. This result differs from a widely known folklore.
・Our prediction for the asymptotic behavior of the perturbative series has been confirmed to the 300-th order by direct algebraic calculation.
We believe that these results lead to a knowledge of the general relation between the perturbative and non-perturbative effects in quantum theories.

Report

(4 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • 1995 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Valley Instanton in the Gauge-Higgs System" Mod.Phys.Lett.A11. 43-54 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Valley Instanton versus Constrained Instanton" Nucl.Phys.B466. 127-158 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Multi-instanton Calculus in N=2 Supersymmetric QCD" Phys.Lett.B388. 331-337 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, M.Sato, and S.Wada: "Fake Instability in the Euclidean Formalism of Quantum Tunneling" Phys.Rev.Lett.79. 4052-4055 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Recent Developments of the Theory of Tunneling" Prog.Theor.Phys.Supplement. 127. 1-92 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Valleys in Quantum Mechanics" Phys.Lett.B. (印刷中). (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Valley Instanton in the Gauge-Higgs System" Mod.Phys.Lett.All. 43-54 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Valley Instanton versus Constrained Instanton" Nucl.Phys.B466. 127-158 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, M.Sato, and S.Wada: "Multi-instanton Calculus in N=2 Supersymmetric QCD" Phys.Lett. B388. 331-337 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, M.Sato, and S.Wada: "Fake Instability in the Euclidean Formalism of Quantum Tunneling" Phys.Rev Lett.79. 4052-4055 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Recent Developments of the Theory of Tunneling" Prog.Theor.Phys.Supplement 127. 1-92 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Valleys in Quantum Mechanics" Phys.Lett. B (in press). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, M.Sato, and S.Wada: "Fake Instability in the Euclidean Formalism of Quantum Tunneling" Phys.Rev.Lett.79. 4052-4055 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Aoyama, T.Harano, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Recent Developments of the Theory of Tunneling" Prog.Theor.Phys.Supplement. 127. 1-92 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Aoyama, H.Kikuchi, I.Okouchi, M.Sato, and S.Wada: "Valleys in Quantum Mechanics" Phys.Lett.B. (印刷中). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Aoyama,T.Harano,M.Sato and S.Wada: "Valley Instanton in the Gange-Higgs System" Modern Physics Letters A. 11・1. 43-54 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] H.Aoyama,T.Harano,M.Sato and S.Wada: "Valley Instanton vs.Constrained Instanton" Nuclear Physics. B466. 127-158 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] H.Aoyama,T.Harano,M.Sato and S.Wada: "Multi-Instanton calculus in N=2 supersymetric QCD" Physics Letters B. 388. 331-337 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] H. Aoyama & T. Harano: "Complex-time approach for Semi-Classical Quantum Tunneling" Mod. Phys. Lett.A10. 1135-1142 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] H. Aoyama: "Recent Developments in the Theory of Quantum Tunneling" Proc. of the 4th Haergdang Summer Wurtshop. section-7. 1-20 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] H. Aoyama, T. Haravo M. Sato, S. Woda: "Valley Instanton in the Gauge-Higgs System" Mod Phys. Lett. A. (発表予定). (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] H. Aoyama, T. Harano M. Sato, S. Woda: "Valley Instanton versus Constrained Instanton" Nucl Phys. B. (発表予定). (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi