• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

THEORETICAL INVESTIGAYTION OF QUANTUM HALL EFFECT

Research Project

Project/Area Number 07640522
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 物理学一般
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

ISHIKAWA Kenzo  Hokkaido Univ.Grad.School of Sci.Prof., 大学院・理学研究科, 教授 (90159690)

Project Period (FY) 1995 – 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1996: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1995: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsQuantum Hall effect / fractional Hall effect / von Neumann lattice / flux phase / Hofstadter butterfly / duality / topological field theory / quantum field theory / von Neumann格子表現 / 有限サイズ補正 / 抵抗標準
Research Abstract

Various problems of Quantum Hall effect are studied based on field theory that is formulated using von Neumann lattice representation and the following new results have been obtained.
1. Integer Quantum Hall effect
Integer quantum Hall effect is used for standard of resistance and for determining the fine strusture constant. Concerning finite size effect and finite current effect, it was shown in this project that under sufficently strong magnetic field, corrections vanish and the Hall conductance is quantized exactly in realistic two-dimensional systems. The quantum Hall effect disappears, however, if thhe current exceeds a critical value. The critical Hall field is proportional to two halvth of the magnetic field.
2. Fractional Hall effect
A new mean field theory of the fractional Hall effect based on flux condenced state on von Neumann lattice is proposed. In this theory, one particle spectrum has a fractal structure owing to two scales of the system, lattice constant and flux per plaquette. The latter is connected with the filling factor. It is shown, for the first time, that the fractional Hall effect is understood from Hofstadter butterfly.
3. Periodic potentials in the strong magnetic field and duality
One particle spectra of the systems with periodic short range potentials are obtained by using von Neumann lattice representation. A kind of duality relation is shown to be hold.
4. A symmetry breaking of topological field theory by Gribov copies is analyzed.

Report

(3 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • 1995 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] K. Ishikawa: "von Neuman latrice for two-dimensional electrons in a mag, field." Physical Review B. 51. 5048-5057 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K. Ishikawa: "Integu quantum Halleffect with realistic boundary condition : Exact quantization and breakdown" Physical Review B. 54. 17819-17837 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K. Ishikawa: "On the absence of fimite Size corrections in the quantized Hall conductance" Physics Letters A. 210. 321-327 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K. Ishikawa: "Flux state in von Neumann lattices and the Fractional Hall effect" Prog. Theor. Phys.97(印刷中)3. (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] N. Maeda: "chiral anomaly and effective field theary for the quantum Hall liquid with edges" Physics Letters B. 376. 142-147 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] A. Sako: "Topological Symmetry Breaking on Einstein Manifolds" Int. Jour. Modern Phys. A. (印刷中). (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Ishikawa, N.Maeda, and K.Tadaki: "Magnetic von Neumann lattice for two-dimensional electrons in a magnetic field" Physical Review. B51. 5048-5057 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Ishikawa, N.Maeda, and K.Tadaki: "integer quantum Hall effect with realistic boundary condition : Exact quantization and breakdown" Physical Review. B54. 17819-17837 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Ishikawa, N.Maeda, K.Tadaki, and S.Uchiyama: "On the absence of finite size corrections in the quantized Hall conductance" Physics Letters. A. 210,321-327 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Ishikawa and N.Maeda: "Flux state in von Neumann lattices and the fractional Hall effect" Prog.Theor.Physics. 97,3, (in print). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] N.Maeda: "Chiral anomaly and effective field theory for the quantum Hall liquid with edges" Physics Letters. B376. 142-147 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] A.Sako: "Topological symmetry breaking on Einstein manifolds" Inter.Journ.of Mod.Phys.A. (in print). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K. Ishikawa: "Integer quantum Hall effect with realistic boundary condition : Exait quantization and breakdown" Physical Review B. 54.24. 17819-17837 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] K. Ishikawa: "On the absonce of finite size corrections in the qualitized Hall conductance" Physics Letters A. A210. 321-327 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] K. Ishikawa: "Flur state in von Neumann Lattices and the Fractional Hall Effect" Prog. Theoretical. Physics. 97.3(印刷中). (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] N. Maeda: "Chiral anomaly and effective field theory for the quantum Hall ligand with edges" Physics Letters B. B376. 142-147 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] A. Sako: "Topological Symmetry Breaking on Einsteim Mani folds" International Journal of Modern Physics A. (印刷中). (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] 石川健三: "On the abseme of fimite size Corrections in the quanitized Hall conductoo" Phipics Letters A. 210. 321-327 (1996)

    • Related Report
      1995 Annual Research Report
  • [Publications] 前田展希: "chiral Amamaly and Effective Field Theory for the quantrm Hall Liquid Lsth.Edges" Physis Letters B. (印刷中). (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi