• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A STUDY ON SILICON HETEROINTERFACE FORMATION AND CONTROL BY LOW-ENERGY ION BEAM DEPOSITION

Research Project

Project/Area Number 07650039
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 表面界面物性
Research InstitutionKYUSHU KYORITSU UNIVERSITY

Principal Investigator

SHOJI Fumiya  KYUSHU KYORITSU UNIVERSITY Faculty Of Engineering PROFESSOR, 工学部, 教授 (00093419)

Co-Investigator(Kenkyū-buntansha) USHIROSAKO Toyokazu  KYUSHU KYORITSU UNIVERSITY Faculty Of Engineering ASSISTANT, 工学部, 助手
GONDO Yasuo  KYUSHU KYORITSU UNIVERSITY Faculty Of Engineering PROFESSOR, 工学部, 教授 (50017852)
後追 豊和  九州共立大学, 工学部, 助手
Project Period (FY) 1995 – 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 1996: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1995: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsHETEROEPITAXY / ION SCATTERING / SILICON / SURFACE AND INTERFACE / THIN FILM / THIN FILM GROWTH / SURFACE ANALYSIS / SURFACESTRUCTURE / Ion Scattering / Surface and Interface / Surface Structure / Surface analysis / イオン蒸着 / イオンビーム分析 / シリコン表面 / エピタキシ- / イオン散乱法 / Bi薄膜成長 / 半導体表面解析
Research Abstract

The semiconductor industry is constantly striving for ever smaller device dimensions. Future high-speed electronic devices may be built up from low-dimensional structures involving layrs and lines as little as a few atomic diameters across. Now, it is becoming possible to discuss on mechanisms of epitaxial growth from the microscopic standpoint, because of rapidly developing field of surface analysis techniques. However, a clear explanation has not been made on detail physics of the hetroepitaxy. It is the purpose of this work to systematically investigate how two-dimensional interface phase controls the heteroepitaxial growth.
Three experimental programs were performed in a period of this work. The results obtained are described below.
1, Analysis of Si (100) -2x1 : H surface hydrogen :
By using low-energy recoil ion spectroscopy technique, we have investigated the structure of Si (100) -1x1 : 2H dihydride and Si (100) -2x1 : H monohydride surfaces. Comparing our experimental results wit … More h computer simulations, we conclude that the H-Si bond angle in the Si (100) -2x1 surface is 65-70゚ and that in the Si (100) -1x1 : 2H surface is 55-60゚ For the dihydride surface, canted dihydride structure is suggested.
2, Analysis of Bi-induced (1x1) structure of the Si (100) surface :
We have carried out the structure analysis of Bi-induced (1x1) surface by using low-energy ion scattering spectroscopy technique. We have shown that the (1x1) surface is induced by Bi atoms with periodicity of bulk-like Si (100) -1x1, however, there are many Bi vacancies in the ordered structure with the (1x1) periodicity.
3, Si heterointerface control by low-energy ion beam deposition and scattering :
We have newly developed low-energy ion beam deposition system which is integrated into analytical facilities of low-energy ion scattering and low-energy electron diffraction to allow characterization of surfaces with or without ion beam deposition. Preliminary experimental measurements are carried out using a Bi ion source. It is confirmed that Bi ion beams can be obtained in the energy range 50-550eV and that hte Bi ion beam deposition proceeds on Si (100) clean surface by in-situ measurement of low-energy ion scattering spectrometry. Less

Report

(3 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • 1995 Annual Research Report
  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] F. Shoji et al.: "Inelastic energy loss of recoiled hydrogen ions in low-energy He^+, Ne^+, and Ar^+ collisions coith hydroge natedi silicon surface." Nucl Instrum, & Methods. B115. 196-199 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] F. Shoji et al: "Sconning tunneling microscopy observation of bismuth growth on Si(100) surface" Surf. sci.(in press).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] F.Shoji, A.Yamada, and K.Oura: "Inelastic energy loss of recoiled hydrogen ions in low-energy He^+, Ne^+ and Ar^+ collisions with hydrogenated silicon surface" Nucl. Instrum. Meth. in Physical Research. B115. 196-199 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] M.Naitoh, H.Shimaya, S.Nisigaki, N.Oishi, and F.Shoji: "Scanning tunneling microscopy observation of bismuth growth on Si (100) surface" Surface Sci. in press.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] F.Shoji and K.Oura: "Hydrogen analysis of silicon surfaces by low-energy ion beams" to be published in : J.Nucl. Materials.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] F.Shoji, N.Oishi and M.Naitoh: "Bi-induced (1x1) structure of the Si (100) surface studied by Low energy ion scattering" submitted in : Surface Sci.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] F.Shoji et al.: "Inelastic energy loss of recoiled hydrogen ions in low-energy He^+, Ne^+, and Ar^+ collisions with hydrogenated silicon surface" Nucl.Instrum.& Methods. B115. 196-199 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] F.Shoji et al.: "Scanning tunneling microscopy observation of bismuth growth on Si(100) surface" Surface Sci.(in press).

    • Related Report
      1996 Annual Research Report
  • [Publications] F.Shoji and K.Oura: "Hydrogen analysis of silicon surface by low-energy ion beams" J.Nucl.Materials. (to be published).

    • Related Report
      1996 Annual Research Report
  • [Publications] F. Shoji, A. Yamada and K. Oura: "In elastic energy loss of recoiled hydrogen ions in low energy He^+, Ne^+, and Ar^+ collisions with hydrogenated silicon surface" Nucl, Instrum. Methods, Physics Research B. (in press).

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi