• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Simulation Study on the Dynamics of Dusty Plasmas and the Structure Formation

Research Project

Project/Area Number 07680519
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field プラズマ理工学
Research InstitutionNational Institute for Fusion Science

Principal Investigator

WATANABE Kunihiko  National Institute for Fusion Science Computer Center, Professor, 計算機センター, 教授 (40220876)

Co-Investigator(Kenkyū-buntansha) ZHU Shao-Ping  National Institute for Fusion Science Theory and Computer Simulation Center Assi, 理論・シミュレーション研究センター, 助手 (20290918)
MIURA Hideaki  National Institute for Fusion Science Theory and Computer Simulation Center Assi, 理論・シミュレーション研究センター, 助手 (40280599)
TAKAMARU Hisanori  National Institute for Fusion Science Theory and Computer Simulation Center Assi, 理論・シミュレーション研究センター, 助手 (20241234)
HORIUCHI Ritoku  National Institute for Fusion Science Theory and Computer Simulation Center Asso, 理論・シミュレーション研究センター, 助教授 (00229220)
藤原 進  核融合科学研究所, 理論・シミュレーション研究センター, 助手 (30280598)
渡邉 智彦  核融合科学研究所, 理論・シミュレーション研究センター, 助手 (30260053)
Project Period (FY) 1995 – 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 1996: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1995: ¥900,000 (Direct Cost: ¥900,000)
KeywordsDusty Plasma / Self-organization / Simulation / Ordered-structure / Charging Process / Crystalization / Dust Grain / Coagulation
Research Abstract

We have developed a new particle simulation code for dust grains which are dynamically charged by the background plasma. Here, not only the regular attachment effect of the electrons and ions, but also the effects of the secondary electron emission and the coagulation of grains are taken into account.
Simulation results show that the all the grains change their charge randomly from negative to positive, or positive to negative in the way of "flio-flop" as the time passes by. The lowest (negative) charge is determined by the balance between the attachment of the electrons and ions, while the highest (positive) charge is determined by the balance between the electron attachment and the secondary electron emission.
From the simulation results of various paramenters, it is found that the flip-flop effect is outstanding when the radius of the grains is of the order of 10nm. This is because the attachment of single electron to the grain does not affect much on the surface potential when the ra … More dius of the grain is large enough, say, of the order of the 1 mum. When the radius is small enough, the average probability of the electron attachment becomes small.
This fact leads to the another interesting result, namely, the coagulation of a large number of grains, e.g., 1000 grains, make the grain size 10 times larger, so that the flip-flop effect dose not play a major role and grain charge may stay negative.
Since the secondary electron emission effect plays a significant role in this simulation, the precise treatment for it is quite important. The secondary electron emission effect would be enhanced more than that given by Sternglas which was employed here, when the grain size is of the order of 10 nm as is treated here.
If this enhancement is taken into account, the flip-flop effect shown in the present work becomes more active, even for the larger value of the threshold energy which is assumed here to be a little smaller than the actual one.
The dust grains, which are charged in positive or negative, show the coagulation to become larger in size. Because of the above characteristics of the flip-flop effect in the grain size, there exists a probable size of the grains for coagulation. Under the typical parameters of a dust plasma, the most suitable size for the coagulation is found to be of the order of 10nm, which shows a good agreement with the experimental facts. Less

Report

(3 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • 1995 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Kunihiko Watanabe et al.: "Computer Simulation Studies of Dust Charging and Coagulation Processes in Dusty Plasmas" Plasma Phys.and Controlled Fusion. 印刷中. (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Kunihiko Watanabe et al.: "Simulation Study of Dust Charging Process and Structure Formation in Dusty Plasmas" Proceedings of the 1996 International Conference on Plasma Physics. Vol. 2. 1978-1981 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Mohammad Salimullah et al.: "Modification and Damping of Alfven Waves in a Magnetized Dusty Plasma" J.Phys.Soc.JPN. Vol. 64. 3758-3766 (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Kunihiko Watanabe et al.: "Computer Simulation Studies of Dust Charging and Coagulation Processes in Dusty Plasmas" Plasma Phys and Controlled Fusion. (in press). (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Kunihiko Watanabe et al.: "Simulation Study of Dust Charging Process and Structure Formation in Dusty Plasma" Proceedings of the 1996 International Conference on Plasma Physics. Vol.2. 1978-1981 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Mohammad Salimul lah et al.: "Modification and Damping of Alfven Waves in a Magnetized Dusty Plasma" J.Phys.Soc.JPN. Vol.64, No.10. 3758-3766 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Kunihiko Watanabe et al: "Computer Simulation Studies of Dust Charging and Coagulation Processes in Dusty Plasmas" Plasma Phys.and Controlled Fusion. 印刷中. (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] Mohammad Salimullah et al: "Modification and Damping of Alfven Waves in a Magnetized Dusty Plasma" J.Phys.Soc.JPN. 64巻10号. 3758-3766 (1995)

    • Related Report
      1996 Annual Research Report
  • [Publications] Tetsuya Sato: "Kinetic Self-Organization:Creation of Super Ion-Acoustic Double Layer21GC01:Physics of Plasmas" 2. 3609-3613 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Mohammad Salimullah: "Modification and Damping of Alfven Waves in a Magnetized Dusty Plasma21GC02:Journal of Physical Society of Japan" 64. 3758-3766 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Tetsuya Sato: "Complexity in Plasma:from Self-Organization to Geodynamo" Physics of Plasmas. 3. (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi