• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

古典群・古典型量子群のcenrtalizer algebraの研究

Research Project

Project/Area Number 07740018
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

岡田 聡一  名古屋大学, 大学院・多元数理科学研究科, 助教授 (20224016)

Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1995: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsHecke環 / Brauer algebra / Littlewood-Richardson ring / 対称関数 / wreath積
Research Abstract

Gを複素数体上の古典群(GL(n,C),Sp(2n,C1,O(n,C1)または対応する量子群とし、Vをその自然表現とするとき、centralizer algebra Z_m(G)=End_G(V^< 【cross product】m>)は、Iwahori-Hecke algebra、Brauer algebra、Birman-Murakami-Wenzl algebraなどのalgebra Z_mのパラメータを特殊化することによって得られる。この研究では、Z_mの既約表現を基底とする自由加群R(Z_m)の直和R=【symmetry】@S6∞(/)m=0@E6R(Z_m)(Littlewood-Richardson ring)の環構造について、その対称関数のなす環との関係を明らかにし、構造定数を与えた。またGL(n.C)の混合テンソル表現のcentralizer algebra についても同様の結果を得ている。
Iwahori-Hecke algebra、Brauer algebra の“wreath積"については、その候補となるalgebraの生成系とその間の基本関係式を与え、その基底の重みつきグラフによるパラメトリゼーションを与えた。今後の課題として、このwreath積の既約表現を具体的に構成すること(特にそのBratteli diagramが多重辺をもつとき)、既約指標を決定することが残されている。

Report

(1 results)
  • 1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi