• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

閉道空間上の汎関数の幾何学

Research Project

Project/Area Number 07740052
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionOchanomizu University

Principal Investigator

小野 薫  お茶の水女子大学, 理学部, 助教授 (20204232)

Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥100,000 (Direct Cost: ¥100,000)
Fiscal Year 1995: ¥100,000 (Direct Cost: ¥100,000)
Keywordsシンプレティック幾何学 / Arnold予想 / Floerホモロジー
Research Abstract

シンプレックス多様体のイグザクト シンプレクトモロフィズムの不動点の個数についてArnold予想と云うものがある。これをある条件の下に示したのが論文1、3である。論文2では、イグザクトと限らないシンプレクトモロフィズムについて考察した。
Arnoldは、ラグランジュアン部分多様体の交叉についても同様の予想をしているが、さらにシンプレクテイック多様体Mのラグランジュアン部分多様体LがMのプレカンタムS^1-バンドルpのルジャンドリアン部分多様体〓に持ち上がる時、これのコンタクト イソトピーによる変形〓(〓)をMに射影して得られる(一般には自己交叉を持つ)ラグランジュアン部分多様体とLとの交叉についても同様の予想を持っていた。
Floerホモロジーを用いて、これを示す事ができるか?というArnoldの問いに部分的に答えたのが論文4である。方針は、pのシンプレクテイゼイションと呼ばれる多様体Qを考え、そこで〓及び〓(〓)からQのラグランジュアン部分多様体を作り、これらについてのFloerホモロジーを考えることであるが、このままでは、J-ホロモロフィック デイスクの空間のコンパクト性に問題が残るので、Qの一つのエンドをpに同伴するデイスク バンドルに取り替えて考える。この時生じる問題はMaslov-インデックスが2のJ-ホロモロフィック デイスクが現れる事で、この状況では一般にFloerホモロジーは定義されない。ここでは、Floerチェインコンプレックスのバウンダリ-ホモモロフィズムの定義を修正することが必要となる。
一昨年、Seiberg-Witten理論が現れ、4次元トポロジーに大きな影響を与えたが、4次元シンプレテイック多様体について、TaubesはSeiberg-Witten不変量が消えない時に、対応するホモロジークラスの中にJ-ホロモロフィックカーブが存在する事を示した。これは強力な結果である。名古屋大学の太田啓史氏と共にこの定理の応用を考えた。我々の結果は、次ぎの通り
4次元シンプレテイック多様体Mが次ぎのいずれかの条件を満たすとする。
1)スカラー曲率が正のRiemann計量を持つ
2)第1Chernクラスとシンプレテイック形式のウエッジ積の積分値が正である
このとき、Mは有理曲面、線織曲面及びそのブロウアップのいずれかである。

Report

(1 results)
  • 1995 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] Kaoru Ono: "On the Arnold conjecture for weakly monoton symplectic man: folds," Invent. math.119. 519-537 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Kaoru Ono: "Symplectic fixed points, the Calabi invariant and Novikov homology,(with br Hong Van)" Topology. 34. 155-76 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Kaoru Ono: "Cup-length esimate for symplectic fixed points" Proceedings of “Symplectic Geometry". (to appear).

    • Related Report
      1995 Annual Research Report
  • [Publications] Kaoru Ono: "Lagrangian intersection under legendriande formations," Duke mathematical Journal. (to appear).

    • Related Report
      1995 Annual Research Report
  • [Publications] Kaoru Ono: "Notes on symplectic 4-manifolds with b^+_2=1(with Hiroshi Ohta)" proceedings of the Taniguchi symposium. (to appear). (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Kaoru Ono: "Symplectic 4-manifolds with b^+_2=1(with Hiroshi Ohta)" Proceedings of “Geometry and Physics". (to appear).

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi