• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

新しい3次元多様体の不変量の構成

Research Project

Project/Area Number 07740064
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionKyushu University

Principal Investigator

高田 敏恵  九州大学, 大学院・数理学研究科, 講師 (40253398)

Project Period (FY) 1995
Project Status Completed (Fiscal Year 1995)
Budget Amount *help
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1995: ¥900,000 (Direct Cost: ¥900,000)
Keywords3次元多様体の不変量 / 量子群の表現
Research Abstract

古典型半単純Lie環sl(n,C)に付随した量子群Uq(sl(n,C))のqが1の巾根の場合の表現を利用することによって,framed linkの不変量が得られ,その組み合わせとして,向きづけられた閉3次元多様体の量子SU(n)不変量が構成できる。そのframed linkの不変量はSymmetry Principleと呼ばれる性質を持つ。それを利用すると,量子SU(n)不変量は,二つの位相不変量に分離する事がわかる。そのうち量子SU(n)不変量より強い不変量を量子PSU(n)不変量と呼ぶ。量子PSU(n)不変量は,level-rank dualityといういい性質を持っている。量子PSU(2)不変量(または量子SO(3)不変量)はodd prime に対して,qが1のr乗根の時,qの整数係数多項式になることが,村上斉氏によって示されたが,量子PSU(n)不変量もそうなることが予想される。その予想の真偽を確かめるため,まず位相的によくわかっている,Lens spaceの量子PSU(n)不変量の値を具体的に計算し,Lens spaceについては予想が正しいことがわかった。更にSeifert homology 3-sphereについても,量子PSU(n)不変量の値を具体的に計算し,その場合にも予想が正しいことを示した。
一方,向きづけられた閉3次元多様体のuniversal Vassiliev invariantが大槻知多忠氏等によって定義された。それはcompact Lie group Gに対して定義され,GをSU(n)としたとき,量子PSU(n)不変量が復活されると予想される。上で計算した,Lens spaceの量子PSU(n)不変量の値の結果は,その予想が正しいことを示唆するものとなっている。

Report

(1 results)
  • 1995 Annual Research Report
  • Research Products

    (1 results)

All Other

All Publications (1 results)

  • [Publications] Toshitake Kohno,Toshie Takata: "Level-rank duality of Witten's 3-manifold invariants" Progress in Algebraic Combinatorics,Adv.St.Pure Math.24. 1-21 (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1995-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi