Research Abstract |
本研究は,第一に,線形計画法における感度解析手法を拡張し,地球環境フレームワークモデルへ適用すること,第二に,区間やファジィ係数をもつ線形計画問題における不明確さの影響を解析すること,第三に,不明確さを伴った問題の解の定義と計算法を確立することの三つを目的として実施された.本年は,特に,第二,三について,新たな解析・計算方法が考察され,研究の新たな方向を見出した.第一の目的に関しては,地球環境フレームワークモデルでは,問題にパラメータ行列の3重積や4重積が含まれるが,人為変数を導入し,行列の2重積までに抑えることにより,申請者らの感度解析手法が適用できることを示した.第二の目的に対しては,感度解析に基づく方法に加え,新たに最大リグレットに基づく方法を考案した.前者では,不明確なパラメータの代表値の定め方が問題となり,危険回避の観点から,二つの定め方を考察した.後者では,最大リグレットが算出できれば,それに影響を与える区間(ファジィ)パラメータが重要なものと判定できることから,解が与えられたときの最大リグレットの算出法を議論した.その結果,線形計画法と分枝限定法により算出できることが判明した.この方法をプログラム化し,有効性を数値実験により確認した.第三の目的については,ファジィ線形計画問題として表現された地球環境フレームワークモデルを解析するための基礎として,ファジィ線形計画問題の新たな解概念として,最良必然的最適解を提案し,その良好な性質を示した.また,二分法と緩和法に基づく計算方法を考案し,プログラム化した.この計算方法の一部に上で述べた最大リグレットの計算法を導入することもできる.また,パラメータが凸多角形に制限される場合へ拡張することもできる.これらは,今後の課題である.
|