• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on a Baysian Non-Parametric Density Estimation of Production Function Using Micro Data

Research Project

Project/Area Number 08303003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Economic statistics
Research InstitutionNiigata University

Principal Investigator

WAGO Hijime  Niigata University, Department.of Economics, Professor, 経済学部, 教授 (00091934)

Co-Investigator(Kenkyū-buntansha) FUKUSHIGE Mototsugu  Nagoya City University, Department of Economics, Associate Professor, 経済学部, 助教授 (10208936)
OKAMURA Kumiko  Toyama University, Department of Economics, Associate Professor, 経済学部, 助教授 (20281016)
TANABE Kunio  Institute of Statistical Mathematics, Department of Prediction and Control, Prof, 予測制御研究系, 教授 (50000203)
Project Period (FY) 1996 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥4,800,000 (Direct Cost: ¥4,800,000)
Fiscal Year 1997: ¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1996: ¥2,700,000 (Direct Cost: ¥2,700,000)
KeywordsBaysian Density Estimation / Non-Parametric Estimation / Production Frontier / Micro Data / Inefficiency Analysis / 工業統計表 / ミクロ(個票)データ / ベイズ型モデル / セミパラメトリック密度推定
Research Abstract

For many economists, it is common practice to use a parametric specification of production functions (PF), such as Cobb-Douglas or Translog production function, when they analyze the production technology. However, these parametric specifications are subject to their own functional biases. In this paper, to partially remedy these shortcomings, we propose Baysian non-parametric estimation method of a PF,as well as analyzing the functional biases of some of the specifications in the CES family.
Employing this method, the input space was partitioned into cells, and the production level for each cell was estimated by Baysian method. The assessed production surface was a collection of piece-wise constant "steps" over these cells. In the estimation process, the relationships between the steps have been modeled as a prior information to the model, so that the smoothness of the function is maintained.
In this research we used micro data (Census of Manufactures, MITI) in estimating the production … More function. This data set include 22 industries and about 50,000 records in each year.
With the census data, surveyed for units of operation, we want to examine the input-output technical relationship (s) for manufacturing industries listed in the Japan Standard Industrial Classification code.
We want to estimate the production surface (function ) from the micro data which will affects production technology more properly. Within the knowledge of the authors, this kinds of micro data for manufacturing production and its analysis are rare.
We have employed the Baysian non-parametric density estimation (BNDE) method for the data analysis. It is important to note that we do not parameterize the estimating function such as Cobb-Douglas and Translog form.
Using the program developed for estimating the density, we estimated the most efficient production surface. From this most efficient production surface, we can analyze the distribution of inefficient production units for each "class" of production, in which the classes are defined based upon the levels of inputs. Less

Report

(3 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 和合 肇、田辺 國士、福重 元嗣、岡村 與子: "ミクロデータを用いた生産フロンティアのベイズ型ノン・パラメトリック推定" 日本統計学会予稿集. 108-109 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] WAGO, Hajime.: "A Bayesian Non-Parametric Density Estimation of Production Function" Blletin of the International Statistical Institute,Contributed Papers. Book 2. 15-16 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 田辺 國士: "逆問題における先駆情報のBayesの方法による取り扱い" 計測と制御. 36-7. 468-471 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] WAGO,Hajime, TANABA,Kunio, FUKUSHIGE,Mototsugu, and OKAMURA,Kumiko: "A Baysian Non-Parametric Density Estimation of Production Function" proceedings on 65th Japan Statistical Accociation Annual Meeting. 108-109 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] WAGO.Hajime: "A Baysian Non-Parametric Density Estimation of Production Function" Blletin of the International Statistical Institute, Contributed Papers, Book2. 15-16 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] TANABE,Kunio: "Treaties on prior information on inverse problems using Bays method (Gyaku-mondai ni-okeru senku-jyoho no bays no houhouniyoru toriatsukai)" Measurement and Contorol. 36-37. 468-471 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 和合 肇、田辺 國士、福重 元嗣、岡村 與子: "「ミクロデータを用いた生産フロンティアのベイズ型ノン・パラメトリック推定」" 日本統計学会予稿集. 108-109 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] WAGO,Hajime: "A Bayesian Non-Parametric Density Estimation of Production Function" Blletin of the International Statistical Institute, Contributed Papers. Book2. 15-16 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 田辺 國士: "逆問題における先駆情報のBayesの方法による取り扱い" 計測と制御. 36-7. 468-471 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 福重 元嗣: "観測誤差を含んだロジット・モデルの推定:平均二乗誤差による比較" オイコノミカ. 33 3/4. 195-204 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi