• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Structures of Knots and Manifolds as Models

Research Project

Project/Area Number 08454018
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKobe University

Principal Investigator

NAKANISHI Yasutaka  Kobe University Faculty of Sciences Professor, 理学部, 教授 (70183514)

Co-Investigator(Kenkyū-buntansha) SAITO Masa-hiko  Kobe University Faculty of Sciences Professor, 理学部, 教授 (80183044)
TAKAYAMA Nobuki  Kobe University Faculty of Sciences Professor, 理学部, 教授 (30188099)
NOUMI Masatoshi  Kobe University Faculty of Sciences Professor, 理学部, 教授 (80164672)
NAGURA Toshinobu  Kobe University Faculty of Sciences Assistant, 理学部, 助手 (50116232)
IKEDA Hiroshi  Kobe University Faculty of Sciences Professor, 理学部, 教授 (10031353)
Project Period (FY) 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 1996: ¥4,000,000 (Direct Cost: ¥4,000,000)
KeywordsModel / Knot / Manifold / Alexander invariant / Geometric structure / Unknotting operation
Research Abstract

According to the purpose and operating plan of the above project, the head investigator has obtained the following results.
1.For two-bridge knots, necessary conditions on coefficients of Alexander polynomials are given.
2.Shibuya's result that any union of two nontrivial knots without local knots is prime is proved in a general setting by tangle arguments. And the concrete example of exception are given.
3.For every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knots, the existence of crossings whose exchange yields the trivial knot is proved. This result is a part of answer of a conjecture on unknotting number.
These results 1,2, and are published.
4.The Delta-unknotting numbers for torus knots, positive closed 3-braids, and positive protzel knots are determined.
5.The borromean rings and the 3-component trivial link cannot be deformable to each other by a finite sequence of link-homotopies and cancellations of consecutive 4-crossings.
These results 4 and 5 are accepted to be published.
He gave lectures based on the above results at international conferences : Conference/Workshop for The Fifth MSJ International Research Instutute Knot Theory (Waseda University, 1996.7.22-31), The fifth Japan-Korea Seminar on Knots and Links (Korean Advansed Institute for Science and Technology, 1997.2.17-20).
Furthemore all investigators have obtained their results according to their roles.

Report

(2 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Y.Nakanishi: "On Alexander polynomials of two bridge knots" J.Australian Math.Soc.Ser.A.60. 334-342 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Union and tangle" Proc.Amer.Math.Soc.124. 1625-1631 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Unknotting number and knot diagram" Revista Mat.Complut.Madrid. 9. 359-366 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Nakamura: "Delta-unknotting number for knots" Jouranal of Knot Theory and Its Ramifications. (to apperar).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Alexander invariant and twisting operation" Proceedings of Knots 96. (to apperar).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] A.Kawauchi: "A survey on Knot Theory" Birkhauser, 420 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "On Alexander polynomilas of two bridge knots" J.Australian Math.Soc.Ser.A.60. 334-342 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Union and tangles" Proc.Amer.Math.Soc.124. 1625-1631 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Inknotting number and knot diagram" Revista Mat.Complut.Madrid. 9. 359-366 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Nakamura: "Delta-unknotting number for knots" J.Knot Theory Rami. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "Alexander invariants and twisting operation" Proceedings of Knot. 96 (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] A.Kawauchi: A survey on Knot Theory. Birkhauser, 420 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Y.Nakanishi: "On Alexander polynomials of two bridge knots" J.Australian Mth.Soc.Ser.A. 60. 334-342 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Y.Nakanishi: "Union and tangle" Proc.Amer.Math.Soc.124-5. 1625-1631 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Y.Nakanishi: "Unknotting number and knot diagram" Revista Mat.Complut.Madrid. (to apperar).

    • Related Report
      1996 Annual Research Report
  • [Publications] K.Nakamura: "Delta-unknotting number for knots" Jouranal of Knot Theory and Its Ramifications. (to apperar).

    • Related Report
      1996 Annual Research Report
  • [Publications] Y.Nakanishi: "Alexander invariant and twisting operation" Proceedings of Knots 96. (to apperar).

    • Related Report
      1996 Annual Research Report
  • [Publications] A.Kawauchi: "A survey on Knot Theory" Birkhauser, 420 (1996)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi