Project/Area Number |
08454035
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
解析学
|
Research Institution | SOPHIA UNIVERSITY |
Principal Investigator |
YOSINO Kunio (1998) Sophia Univ.Math.Lecturer, 理工学部, 講師 (60138378)
森本 光生 (1996-1997) 上智大学, 理工学部, 教授 (80053677)
|
Co-Investigator(Kenkyū-buntansha) |
MORIMOTO Mitsuo International Catholic Univ.Math.Professor, 教授 (80053677)
KANEYUKI Souji Sophia Univ.Math.Professor, 理工学部, 教授 (40022553)
TAHARA Hidetoshi Sophia Univ.Math.Professor, 理工学部, 教授 (60101028)
OUCHI Sunao Sophia Univ.Math.Professor, 理工学部, 教授 (00087082)
UCHIYAMA Kouichi Sophia Univ.Math.Professor, 理工学部, 教授 (20053689)
平田 均 上智大学, 理工学部, 助手 (20266076)
吉野 邦生 上智大学, 理工学部, 講師 (60138378)
|
Project Period (FY) |
1996 – 1998
|
Project Status |
Completed (Fiscal Year 1998)
|
Budget Amount *help |
¥7,200,000 (Direct Cost: ¥7,200,000)
Fiscal Year 1998: ¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 1997: ¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 1996: ¥2,400,000 (Direct Cost: ¥2,400,000)
|
Keywords | Complex Manifold / Analytic Functional / Partial Differential Equation / Singularity / asymptotic Expansion / Computer / Integer theory / Algebra / 複素球面 / リ-球 / フーリエ・ボレル変換 / ディリクレ級数 / フーリエ-ボレル変換 |
Research Abstract |
1. (1)The meaning of Ramanujan's integral formula and Rananujan' summation formula are given by using the theory of analytic functionajs. Especially, relation between Ramauujan's integral formula and sampling theorem is clarified. (2)The structure of analytic functionaiB on real sphere, complex sphere and Lie sphere are studied. 2. (1)Uniqueness of solution to Fuchujan partial differential equations, (2)Gevrey asymptotic behavior of formal solutions of partial differential equations (3) Behavior of Davey-Stewartson are considered. 3. Conformal group, orbit decomposition in symmetric spaces are determined. Reconstruction of graded Lie algebra are done. 4. Zeta function associated to Riemaniann symmetric spaces and Shintani function are determined. 5. Computer method to visualize the stokes line (which is important in complex WKB analysis) is developped.
|