• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

STUDY OF SELF-SIMILAR PROCESSES

Research Project

Project/Area Number 08454038
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOCHANOMIZU UNIVERSITY

Principal Investigator

KASAHARA Yuji  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,PROFESSOR., 理学部, 教授 (60108975)

Co-Investigator(Kenkyū-buntansha) NARITA Kiyoko  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,RESEARCH ASISTANT, 理学部, 助手 (80189208)
MATSUZAKI Katsuhiko  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,ASSOC.PROFESSOR, 理学部, 助教授 (80222298)
YOSHIDA Hiroaki  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,ASSOC.PROFESSOR, 理学部, 助教授 (10220667)
KANEKO Akira  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,PROFESSOR, 理学部, 教授 (30011654)
TAKEO Fukiko  OCHANOMIZU UNIVERSITY FUCULTY OF SCIENCE,PROFESSOR, 理学部, 教授 (40109228)
高村 幸男  お茶の水女子大学, 理学部, 教授 (70017177)
Project Period (FY) 1996 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥4,600,000 (Direct Cost: ¥4,600,000)
Fiscal Year 1997: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1996: ¥3,000,000 (Direct Cost: ¥3,000,000)
Keywordsself-similar / fractional Brownian motion / extremal process / local time / Gaussian process / occupation times / limit theorem / Gaussian process / 局所時間 / モーメント / 指数分布
Research Abstract

・We studied the limiting processes for occupation times of fractional Brownian motion, which is a typical self-similar stochastic process. We see that the limiting process degenerates with the usual linear normalization but if consider the processes with the log-scale, we do have a meaningful process, which is the inverse of the so-called extremal process.
・We generalized the above result to a certain class of Gaussian processes, where the occupation time increases slowly.
・We studied the asymptotic behavior of the local times of fractional Brownian motion. As the index times the dimension approaches 1, we see that the one-dimensional marginal distributions of the local time at the origin converge to the exponentioal distribution, and furthermore, the processes, with a suitable time scale, converge to the inverse extremal process.
・The invariant set under a family of functions has self-similarity. We studied its topological aspects.

Report

(3 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] Y.Kasahara & N.Kosugi: "A Limit theorem for occupation times of fractional Brownian motion" Stoch.Proc.Appl.67. 161-175 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara & N.Kosugi: "A limit thorem for occupation times of Gaussian processes" Trends in Probability and Related Analysis. 197-208 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara & N.Ogawa: "A note on the Local Time of Fractional Brownian Motion" J.Theoret.Probab.to appear.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" J.Math.Sci.Univ.Tokyo. 4. 551-593 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" Proc.7th Int.Colloq.on Diff.Eq.,VSP. 197-204 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] F.Takeo: "The topology of fractal sets induced by a certain type of multivalued functions" Nonlinear Analysis,Theory,Methods & Applications. 30. 3071-3080 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Kosugi: "A Limit theorem for occupation times of fractional Brownian motion" Stoch.Proc.Appl.67. 161-175 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Kosugi: "A limit theorem for occupation times of Gaussian processes" Trends in Probability and Related Analysis. 197-208 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Ogawa: "A note on the Local Time of Fractional Brownian Motion" J.Theoret.Probab.(To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" J.Math.Sci.Univ.Tokyo. 4. 551-593 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" Proc.7th Int.Colloq.on Diff.Eq.197-204 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] F.Takeo: "The topology of fractal sets induced by a certain type of multivalued functions" Nonlinear Analysis, Theory, Methods & Applications. 30. 3071-3080 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.U.Boden and K.Yokogawa: "Moduli spaces of parabolic Higgs bundles and parabolic ^<K (D) > pairs over a smooth curve : I" International Journal of Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Y.Kasahara & N.Kosugi: "A Limit theorem for occupation times of fractional Brownian motion" Stoch.Proc.Appl.67. 161-175 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Kasahara & N.Kosugi: "A limit theorem for occupation times of Gaussian processes" Trends in Probability and Related Analysis. 197-208 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Kasahara & N.Ogawa: "A note on the Local Time of Fractional Brownian Motion" J.Theoret.Probab.(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" J.Math.Sci.Univ.Tokyo. 4. 551-593 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] A.Kaneko: "On continuation of Gevrey class solutions of linear differential equations" Proc.7th Int.Colloq.on Diff.Eq.,VSP. 197-204 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] F.Takeo: "The topology of fractal sets induced by a certain type of multivalued functions" Nonlinear Analysis,Theory,Methods & Applications. 30. 3071-3080 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Kasahara,Y.Matsumoto: "On Kallianpur-Robbins law for fractional Brownian motion" J.Math.Kyoto.Univ.36-4. (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Y.Kasahara,N.Kosugi: "A limit theorem for occupation times of fractional Brownian motion" Stoch.Proc.Appl.(校正中). (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] F.Takeo: "Topological property of an invariant set with respect to a family of functions" Sci.Bull.Josai Univ.special Issue. 1. 45-61 (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] M.Matsuto,F.Takeo: "Classification of some rules of cellular automa" Sci.Bull.Josai Univ.special Issue. 1. 63-76 (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] F.Takeo: "Box-counting Dimension of Graphs of Generalized Takagi Ser." Japan J.Indust.Appl.Math.13. 1-8 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] K.Matsuzaki: "Bounded and integrable quadratic differentials" "Geometric Complex Analysis"World Scientific. 443-450 (1996)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi