• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automorphic and Galois representations

Research Project

Project/Area Number 08640023
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

FUJIWARA Kazuhiro  Nagoya Univ.graduate school of Mathematics, Associate prof., 大学院・多元数理科学研究科, 助教授 (00229064)

Co-Investigator(Kenkyū-buntansha) MUKAI Shigeru  Nagoya Univ.graduate school of Math.prof., 大学院・多元数理科学研究科, 教授 (80115641)
NAMIKAWA Yukihiko  Nagoya Univ.graduate school of Math.prof., 大学院・多元数理科学研究科, 教授 (20022676)
KITAOKA Yoshiyuki  Nagoya Univ.graduate school of Math.prof., 大学院・多元数理科学研究科, 教授 (40022686)
UMEMURA Hiroshi  Nagoya Univ.graduate school of Math.prof., 大学院・多元数理科学研究科, 教授 (40022678)
Project Period (FY) 1996 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1997: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1996: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsGalois representation / Automorphic representation / Hecke algebra / 楕円曲線
Research Abstract

I have studied the Iwasawa theory and Langlands conjecture over number fields, motivated by A.Wiles' work. Here the identification of deformation rings of Galois representations and Hecke algebras (called Mazur conjecture) plays a central role. I have shown that the Hecke algebra of GL (2) over a totally real field is a local complete intersection ring, and is identified with a universal deformation ring of a mod p modular representation.
The essential step in the work is, that the freeness property of a cohomology group of a modular curve over a Hecke ring (used essentially in Taylor-Wiles work) is a consequence of axioms which are easier to verify. I have named the axioms Taylor-Wiles system, in analogy with Euler systems (I should note that a similar idea was found independently by F.Diamond). By constructing a Taylor-Wiles system by Shimura curves, the Mazur conjecture over general totally real fields is proved. By combining the result with a level optimization argument (the even degree case of the Mazur principle is most difficult), many two dimensional 1-adic Galois representations correspond to automorphic representations, thus verifying the Langlands correspondence in these cases. Especially, a generalization of Taniyama-Shimura conjecture is shown fairly generally. There is a report on this work, including recent results. The detail is distributed as a preprint (Deformation rings and Hecke algebras in the totally real case), submitted to a journal, and 2 other articles are under preparation.
Even in case of reducible residual representations, it is shown that there are infinitely many reducible representations which satisfy the Mazur conjecture, when the totally real field is fixed.

Report

(3 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Fujiwara, Kazuhiro: "Rigicl geometry,Lefschetz-Verdier troca formula and Deligne′s ectuve Delignes conjecture" Inven tiones Mathematicae. 127. 489-533 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 藤原 一宏: "モデュラー多様体と岩沢理論" 数理解析研究所考究録. 998. 1-19 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Umemura, Hiroshi: "Galois theory of algebraic arl diflevential equatichs" Nagoya Math.J. 144. 1-58 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Kitaoka, Yoshiyuki: "Finite arithmetic subgroups of GLn-V" Nagoya Math.J,. 146. 131-148 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Mukai, Shigeru: "Curves and K3 surfaces of genus eleven" Pure and Applied Math.189-197 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Fujiwara, K.: "Rigid geometry, Lefsohoty-Verdier trace, formula, and Deligne's conjecture" Invent.Math.127. 489-533 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Fujiwara, K.: "Modularvarieties and Iwasawa theory" RIMS publication. 998. 1-19 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Umemura, H.: "Galois theory of algebraic and differential equations" Nagoya Math.J. 144. 1-58 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Kitaoka, Y.: "Finite arithmetic subgroups of GLu, V" Nagoya Math.J. 146. 131-148 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Mukai, S.: "Curves and K^3 surfaus of genus eleven" Pure and Applied Math.189-197 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] FUJIWARA,K.: "Rigld geometry, Lefschetz-Verdier trace formula and Deligne's Conjec ture" Inventiones Mathematicae. 127. 489-533 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 藤原一宏: "モデュラー多様体と岩沢理論" 数理解析研究所考究録. 998. 1-19 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Umemura,H: "Galois theory of algebralo and diffevential equatlous" Nagoya Math.J.144. 1-58 (1996)

    • Related Report
      1997 Annual Research Report
  • [Publications] KITAOKA,Y.: "Finite arithmetic subgroups of GLn,V" Nagoya Math.J.146. 131-148 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] MUKAI,S.: "Curves and K3 surfaces of geuus eleven" Pure and Applied Math.189-197 (1996)

    • Related Report
      1997 Annual Research Report
  • [Publications] K.Fujiwara: "Rigiel geometry,Lefsihet2-Verdier traze formula and Delighe's conjectu" Inventiones Mathematicae. 127. (1997)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi