• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

COMPLEX ANALYSIS BY THE L METHOD

Research Project

Project/Area Number 08640193
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionNagoya University

Principal Investigator

OHSAWA Takeo  Nagoya University, Graduate School of Mathematics Professor, 大学院・多元数理科学研究科, 教授 (30115802)

Co-Investigator(Kenkyū-buntansha) KOBAYASHI Ryoichi  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (20162034)
SUZUKI Noriaki  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50154563)
TANIGAWA Harumi  Nagoya University, Graduate School of Mathematics, Assistant, 大学院・多元数理科学研究科, 助手 (30236690)
YOSHIKAWA Kenichi  Nagoya University, Graduate School of Mathematics, Assistant, 大学院・多元数理科学研究科, 助手 (20242810)
NAKANISHI Toshihiro  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (00172354)
青本 和彦  名古屋大学, 大学院・多元数理科学研究科, 教授 (00011495)
Project Period (FY) 1996 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 1997: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 1996: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsLevi-flat / L^2 estimates / Kronecker's limit formula / Levi-平坦 / L^2評価式 / 擬凸領域 / hyperconvexity / 射影空間
Research Abstract

MAIN RESEARCH OBJECT IS : PSEUDOCONVEX DOMAINS IN COMPLEX PRJECTIVE SPACES.Let OMEGA be a pseudoconvex domain in D^n with a C^*-smooth boundary *OMEGA. It was shown in a joint article with N.Sibony that, it n<greater than or equal>2 *OMEGA cannot be the union of (not necessarily compact) complex hypersurfaces. This is still a preprint, but submitted to Ann.Math.sin Sept.'97. We have just did a revision according to the referee's opinion. A work of preliminary nature will appear soon in Nagoya Math.J.There should be in a near future more extensive research on Levi-flat hypersurfaces, because a rich mathematical entity became apparent through our work in this kind of manifolds. Yoshikawa generalized Kronecker's limit formula to higher dimensions.

Report

(3 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • Research Products

    (4 results)

All Other

All Publications (4 results)

  • [Publications] T.Ohsawa and N.Sibony: "Bounded P.S.H.Functions and Pseudoconvexity in Kahler Manifolds" NAGOYA MATHEMATICAL JOURNAL. 149. (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] T.Ohsawa and N.Sibony: "Bounded P.S.H.Functions and Pseudoconvexity in Kahler Manifolds" NAGOYA MATH.J.149 (to appear). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] TAKEO OHSAWA and NESSIM SIBONY: "Bounded P.S.H.Functions and Pseudoconvexity in Kahler Manifolds" NAGOYA MATHEMATICAL JOURNAL. 149. (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] Takeo Ohsawa and Nessim Sibony: "Bounded P.S.H.functions and pseudoconvexity in Kahler manifold" Nagoya Mathematical Journal. (発表予定).

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi