• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

非線形波動方程式とDissipation効果

Research Project

Project/Area Number 08640215
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKyushu University

Principal Investigator

中尾 愼宏  九州大学, 大学院・数理学研究科, 教授 (10037278)

Co-Investigator(Kenkyū-buntansha) 浜地 敏弘  九州大学, 大学院・数理学研究科, 教授 (20037253)
加藤 久子  九州大学, 大学院・数理学研究科, 教授 (00038457)
Project Period (FY) 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1996: ¥2,200,000 (Direct Cost: ¥2,200,000)
KeywordsNonlinear Wave Eguation / Dissipation / Decay / Periodic solution / Snuoothing Effect
Research Abstract

代表者中尾は、主として三つのテーマについて新しい研究成果をあげた。一つは領域の境界の一部を含む部分領域でのみ効果的という局在化した摩擦項で、かつ、退化的または非線形であるような項を持つ波動方程式に対して解のエネルギーの減衰度を精密に評価したものである。これは、波の伝播の基本性質と解のある種の正則性を考慮にいれて、「NAKAO」の方法を適用して導くことができたものである。二つ目は強いdissipationをもつ非線形波動方程式に対して、外力データが小さいという条件なしで局期解および反周期解の存在を証明したものである。データが小さいときはすでに知られていたがその条件を除くことが出来たのである。これらの解は単なる弱解でなく、いわゆる強解になっているのも特徴である。三つ目は、平均曲率型非線形放物形方程式に対して、微分ノルムに関したある種の平滑化効果および指数的減衰を小原(八代高専)とともに証明したものである。平均曲率型では、主要項が弱いのでこれまでそのような結果は知られていなかった。他に、Navier-Stokes方程式について、非有界領域においてdissipation効果を利用して周期解の存在を小菌(名大多元数理)とととも証明した。
分担者加藤は、やはりdissipation効果を利用して、有界領域において、Navier-Stokes方程式の周期解を証明した。外力がある種のcriticalな空間に入る場合を含んでいるところが特徴である。
分担者浜地は、抽象的な力学系な理論の構築をすすめるとともに、その複雑系への応用を考察した。非線形偏微分方程式への応用は今後の課題である。

Report

(1 results)
  • 1996 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] M.NAKAO: "Decay of solutions of the wave eguation with a local degenerate tissiyative term" Israel Jousnal of Matematics. 95. 25-42 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] M.NAKAO: "Decay of solutions of the wave eguation with a local nonlinear dissipation" Mathematische Annalen. 305. 403-417 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] M.NAKAO: "Existence of an Anti-peiodolic solutiom for the guasilinesn wave eguation with uiscocity" Journal of Mathematical Analysis and Applications. 204. 754-764 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] M.NAKAO,Y.Ohara: "Gradient estimates for a guasilinear parabolic eguatirs of the mean curvature type" Journal of the Mathematical Society of Japan. 48. 455-466 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] H.Kato: "Existence of periodic solutions of Navies-Stokcs Eguations" Journal of Mathematical Analysis and Applications. (to appear).

    • Related Report
      1996 Annual Research Report
  • [Publications] T.Hamachi: "Suborbits and group extensions of blonis" Israel Journal ob Mathematis. (to appear).

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi