Project/Area Number |
08640276
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Osaka University |
Principal Investigator |
眞鍋 昭治郎 大阪大学, 大学院・理学研究科, 助教授 (20028260)
|
Co-Investigator(Kenkyū-buntansha) |
内田 素夫 大阪大学, 大学院・理学研究科, 講師 (10221805)
杉本 充 大阪大学, 大学院・理学研究科, 講師 (60196756)
竹腰 見昭 大阪大学, 大学院・理学研究科, 助教授 (20188171)
西谷 達雄 大阪大学, 大学院・理学研究科, 教授 (80127117)
小磯 憲史 大阪大学, 大学院・理学研究科, 教授 (70116028)
|
Project Period (FY) |
1996
|
Project Status |
Completed (Fiscal Year 1996)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1996: ¥2,100,000 (Direct Cost: ¥2,100,000)
|
Keywords | 確率振動積分 / ウィーナー空間における停留位相の方法 / ヴァン・ヴレェック-パウリの公式 |
Research Abstract |
ウィーナー空間における停留位相の方法について、我々は以前に二次のウィーナー汎関数を位相関数とする確率振動積分に対し一般的な公式を示しLevyの確率面積を含む二次のウィーナー汎関数のクラスに対し漸近評価を与えていたが、二次のウィーナー汎関数を位相関数とする場合ではあるが,物理学で知られているVan Vleck-Pauliの公式の類似物を得た.この公式においては全ての量が古典力学に現われる作用や古典軌道などの量で表されており極めて見通しが良くなった.また、計算もそれまでのものより簡単になった.さらに、我々はヤコビ場との関係についても結果を得て、二次のウィーナー汎関数については事情がかなりわかってきたといえる。最近,MalliavinとTaniguchiが,位相関数に解析的という強い仮定のもとではあるが,極めて一般的な設定で停留位相の方法を論じている.しかし,位相関数が二次以外のウィーナー汎関数については指数関数的に減少することを示すにはいたっていない. 一方,もとのファインマン積分の場合には,Fujiwaraが累次積分の極限という定義に立ち返って有限次元の停留位相の方法を繰り返し使って,位相関数が二次以外のときにも無限次元の停留位相の方法が成り立つことを示している.彼の方法は,そのままでは我々の場合には適用できないが,参考になる方法であると思われるので、その方向で、停留位相の方法を確立することのできる適当なクラスの二次以外のウィーナー汎関数を探すことを当面の研究目標としたい.
|