• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The Guidance of the Asymptotic Expansion Formulae on the Multivariate Inference

Research Project

Project/Area Number 08680334
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionMeisei University

Principal Investigator

IWASHITA Toshiya (1998)  Meisei Univ.Natural Sciences Assitant Prof., 一般教育, 講師 (20266919)

塩谷 実 (1996-1997)  明星大学, 情報学部, 教授 (50116597)

Co-Investigator(Kenkyū-buntansha) YOSHIHIDE Kakizawa  Hokkaido Univ.Economics Associate Prof., 経済学部, 助教授 (30281778)
岩下 登志也  明星大学, 一般教育, 講師 (20266919)
Project Period (FY) 1996 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1996: ¥700,000 (Direct Cost: ¥700,000)
Keywordsmisdiscrimination / asymptotic expansion / upper bound / accuracy and sample size / parameter space / simulation / 2群判別 / 過判別確率 / 精度の近似上限 / 多次元正規乱数
Research Abstract

This work is the second step of preceding research which was supported by Grant-in-Aid for Scientific Research of the Ministry of Education with Contract Number 06680293. The aim of this research is to investigate the asymptotic expansion approximation to the probability of misdiscrimination (PMD) on the discriminant analysis for two normal populations II<@D2i@>D2 : N<@D2p@>D2(mu<@D2i@>D2, SIGMA), mu<@D2i@>D2 (]SY.tri-substituted right.[) *, (]SY.tri-substituted right.[) (]SY.di-substituted left.[) 0, i = 1, 2), and to construct an experimental upper pound on the absolute error of the approximation. We often estimate the PMD, which is based on Wald-Anderson's W-rule, by the asymptotic expansion formula because of the difficulty of evaluation for the "exact " PMD.The asymptotic expansion formula is a function of the parameters, that is, the dimension of data p, the sample size n, and Mahalanobis distance DELTA, therefore, we have to seek the domain of the parameter space (p, n, DELTA) which would give the good approximation for the asymptotic expansion formula of PMD.To constitute the domain, we call it "reference domain D", on the first step, we descrive some curves of PMD given by the asymptotic expansion formula, and determine D.For some selected points of (p, n, DELTA) in D, we next estimate the exact PMD by Monte Carlo simulation, and evaluate the absolute error between PMD by asymptotic expansion formula and one by the simulation. Finally, to construct an experimental upper bound U<@D2T@>D2 XI U<@D2T@>D2(p, n, DELTA) = Kp<@D1p@>D1n<@D1lambda@>D1 exp{a(DELTA - 0.6)}(1 + epsilon), (p, n, DELTA) (]SY.tri-substituted right.[) D, we estimate the constants K, a, p, lambda, epsilon by using the same points, we have K = 0.08054, a = -1.49827, p = 0.99678, lambda = -1.99357, epsilon = 1.7836. To check the effectiveness of U<@D2T@>D2, we apply the rest of the
other points in D, we can show the effectiveness of U_T for most of all the points.

Report

(4 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • 1996 Annual Research Report
  • Research Products

    (7 results)

All Other

All Publications (7 results)

  • [Publications] 塩谷 實: "統計的推測における標本分布に対する漸近展開公式と標本の大きさ-2群判別の誤判別確率に対する漸近展開公式のパラメーターの有効範囲-" 明星大学研究紀要-情報学部-. 第6号. 19-29 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Minoru Siotani: "Asymptotic expansion for sampling distribution and sample size in statistical inference II -Probability of misdiscrimination in the discriminant analysis-" Journal of The Japan Statistical Society. Vol.28 No.2. 135-152 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Minoru Siotani and Toshiya Iwashita: "Asymptotic expansion for-mulae for sampling distribution and sample size in statistical in-ferece-Effective domain of the parameters for the probability of misdiscrimination in the discriminant analysis-" Bulletin of Meisei University. No.6. 19-29 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Minoru Siotani, Toshiya Iwashita and Takashi Seo: "Asymptotic expansion for sampling distribution and sample size in statistical inference II-Probability of misdiscrimination in the discriminant analysis-" Journal of The Japan Statistical Society. Vol.28, No.2. 135-152 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Minoru Siotani: "Asymptotic expansion for sampling distribution and sample size in statistical inference II -Probability of misdiscrimination in the discriminant analysis-" Journal of The Japan Statistical Society. Vol.28 No.2. 135-152 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 塩谷 実: "統計的推測における標本分布に対する漸近展開公式と標本の大きさ-2群判別の誤判別確率に対する漸近展開公式のパラメーターの有効範囲-" 明星大学研究紀要-情報学部-第6号. 第6号 (受理). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 塩谷実: "統計的推測における漸近展開公式の精度に対する実験的上限の構成" 明星大学研究紀要-情報学部-. 4. 31-49 (1996)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi