• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

量子代数とその表現論

Research Project

Project/Area Number 08740003
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

澁川 陽一  北海道大学, 大学院・理学研究科, 助手 (90241299)

Project Period (FY) 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1996: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsヤン・バクスター方程式 / 量子代数 / 作用素 / 有限次元解
Research Abstract

ここ数年、ヤン・バクスター方程式の無限次元解である完全Z対称なR行列を、関数空間上に実現することにより得られる楕円型R作用素の満たす性質について研究している。本年度に主として研究したのは、楕円型R作用素に付随した可換な差分作用素族の構成である。
ヤン・バクスター方程式の解である楕円型R作用素である適切な有限次元部分空間上に制限すると、Belavinにより構成されたヤン・バクスター方程式の有限次元解が得られる。そこで「Belavinにより構成された有限次元解の性質は、楕円型R作用素の性質から導かれるのではないか」という問題が生じる。研究代表者が以前に示した楕円型R作用素に関するVertex-IRF対応も、上記の問題を肯定的に解決したものであると捉えられる。
ヤン・バクスター方程式の有限次元解は、多くの数理物理学者により研究されている。特に、有限次元解に付随した可換な差分作用素族の構成は、現在、活発に研究されている分野の1つである。
昨年度の科学研究費補助金実績報告書に記載したように、楕円型R作用素から可換な差分作用素族を構成する方法の1つは知られていた。Belavinによる解では、これ以外の構成方法が知られている。そこで本年度は、この方法を一般化して楕円型R作用素に付随した可換な差分作用素族を構成しようと試みた。現在、簡単な結果が得られている。今後は、これをさらに発展させ、論文にまとめていきたいと考えている。

Report

(1 results)
  • 1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi