Project/Area Number |
08740027
|
Research Category |
Grant-in-Aid for Encouragement of Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Hiroshima University |
Principal Investigator |
都築 暢夫 広島大学, 理学部, 助手 (10253048)
|
Project Period (FY) |
1996
|
Project Status |
Completed (Fiscal Year 1996)
|
Budget Amount *help |
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1996: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 局所有限モノドロミ- / p進cohomology / overconvergent F-isocrystal / slope filtration / Tate型予想 |
Research Abstract |
正標数(標数p)代数多様体上のp進局所系はoverconvergent F-isocrystalと呼ばれるrigid geometricな意味で標数0へ持ち上げた多様体上のFrobenius構造付きの微分加群の層で表される。当研究では、p進線型微分方程式系の研究を用いて、正標数代数多様体のp進cohomologyの有限性(有限モノドロミ-予想)に関する幾つかの結果を得た。以下、主な結果を表す。 代数曲線の場合では、quasi-unipotent overconvergent F-isocrystalと呼ばれるものについては、局所的にFrobeniusの作用に関するslope filtrationと呼ばれるものが一意的に入ることが示せた。(Crewにより、overconvergent F-isocrystalはquasi-unipotentであると予想されている。)この結果から、局所的にはquasi-unipotent overconvergent F-isocrystalのGrothendieck群はoverconvergent etale 〓-▽-moduleで生成されることが解り、L-関数やε-因子等の数論的対象の研究においてl-進理論の場合と同様にBrauer inductionと呼ばれる便利な方法が使えるようになった。 F-isocrystalのTate予想は、de Jongによるalterationの理論を用いると、1次元の局所的な場合に完全に帰着されるという結果を得た。この結果と以前得たetale 〓-▽加群の場合のTate型の定理と合わせると、unit-root F-isocrystalに制限すると一般の次元でTate予想が成立する。 当該研究を通して、p-進局所系の全体像が少しずつ見えてきた感じがする。
|
Report
(1 results)
Research Products
(2 results)