Project/Area Number |
08740034
|
Research Category |
Grant-in-Aid for Encouragement of Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
田口 雄一郎 東京都立大学, 理学部, 助手 (90231399)
|
Project Period (FY) |
1996
|
Project Status |
Completed (Fiscal Year 1996)
|
Budget Amount *help |
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1996: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | ψ・層 / L・函数 / 解析接続 / 函数体 / Drinfeld加群 / 函数等式 |
Research Abstract |
A=[Fg[+]とし、XをA-scheme(reetherian)とする。X上の、overconvergent∞-進ψ・層εに対し、その(global)L・函数をL(ε/x,s)とする。 D.Wan氏との前著ではこのL(ε/x,s)がmeromorphicであることを示したが、続篇に於いて、L(ε/x,s)^<(-1)>^<dimx-1>は、もしXがaffine完全交叉ならば、entireであることを示した。(解析接続) また、ここで登場するやうなL-函数のあるvarientに対して適用可能であるやうな"Fourier解析"を研究した。結果として、ある種のzta函数は"積分表示"を持つことがわかった。
|
Report
(1 results)
Research Products
(1 results)