• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Differential operators of gradient type on symmetric spaces and representations of Lie algebras

Research Project

Project/Area Number 09440002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

YAMASHITA Hiroshi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (30192793)

Co-Investigator(Kenkyū-buntansha) SHIBUKAWA Youichi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助手 (90241299)
SAITO Mutsumi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (70215565)
YAMADA Hiro-fumi  Hokkaido Univ. Grad. School of Sci., Asso. Prof., 大学院・理学研究科, 助教授 (40192794)
NISHIYAMA Kyo  Kyoto Univ. Fac. Of Int. Hum. St., Asso. Prof., 総合人間学部, 助教授 (70183085)
HIRAI Takeshi  Kyoto Univ. Grad. School of Sci., Prof., 大学院・理学研究科, 教授 (70025310)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥13,900,000 (Direct Cost: ¥13,900,000)
Fiscal Year 1999: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 1998: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 1997: ¥6,200,000 (Direct Cost: ¥6,200,000)
Keywordssemisimple Lie group / Harish-Chandra module / nilpotent orbit / differential operator of gradient type / multiplicity / generalized Whittaker model / discrete series / highest weight representation / 随伴多様体 / 四元数型対称空間 / Borel de-Siebenthal離数系列 / 一般化されたWhittaker模型 / 不変微分作用素 / エルミート対称空間 / Harish-Chandara加群
Research Abstract

The purpose of this project is to study the embeddings of irreducible Harish-Chandra modules into various induced representations of a semisimple Lie group, by using the invariant differential operators of gradient type on certain homogeneous vector bundles over the Riemannian symmetric space. The kernel of such a differential operator realizes the maximal globalization of the dual Harish-Chandra module, and the determination of the embeddings in question is reduced to specifying the equivariant functions in this kernel space.
First, the generalized Gelfand-Graev representations form a family of induced modules parametrized by the nilpotent orbits. Concerning the Harish-Chandra modules with highest weights for a simple Lie group of Hermitian type, the generalized Whittaker models associated with the holomorphic nilpotent orbits are specified. Namely, it is shown that each highest weight module embeds, with nonzero and finite multiplicity, into the generalized Gelfand-Graev representation attached to the unique open orbit in its associated variety. As for the unitary highest weight module, the space of the embeddings can be completely described in terms of the principal symbol of the differential operator of gradient type.
Second, we consider a simple Lie group of quaternionic type. The 0th n-homology spaces, or equivalently, the embeddings into the principal series, of the Borelde Siebenthal discrete series are described, by using the Schmid differential operator of gradient type. We find in particular that the n-homology space has exactly two exponents if the real rank of the group is not one.
Third, the relationship between the multiplicities in the associated cycles and the differential operators of gradient type are clarified for certain Harish-Chandra modules with irreducible associated varieties. The multiplicity can be written down by means of the principal symbol of a gradient type differential operator.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] Yamashita H.: "Description of the associated varieties for the discrete series representations of a semisimple Lie group"Comment.Math.Univ.St.Paul.. 47・1. 35-52 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yamashita H.: "Associated variety, Kostont-Sekiguchi correspondence, and locally free V(π)-action on Harish-Chandra modules"J.Math.Soc.Japan. 51・1. 129-149 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yamashita H.: "Generalized Whittaker models and n-homology for some small irreducible representations of simple Lie groups"数理解析研究所講究録. 1124. 86-105 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yamashita H.: "Reduced Schur henctions and Littlewood-Richardson coefficients"J.of London Math.Soc.(2). 59・2. 396-406 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Saito M.: "Hypergeometric polynomials and integer programming"Compositio Math.. 115・2. 185-204 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Nishiyama K.: "Bernstein degree of singular unitary highest weight representations of the metaplectic group"Proc.Japan Acad.. 75・2. 9-11 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Yamashita: "Description of the associated varieties for the discrete series representations of a semisimple Lie group"Comment. Math. Univ. St. Paul.. 47-No.1. 35-52 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Yamashita: "Associated variety, Kostant-Sekuguchi correspondence, and locally free U(n)-action on Harish-Chandra modules"J. Math. Soc. Japan. 51-No.1. 129-149 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Yamashita: "Generalized Whittaker models and n-homology for some small irreducible representations of simple Lie groups"RIMS Ko^kyu^roku. Vol.1124. 86-105 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Yamashita: "functions and Littlewood-Richardson coefficients"J. of London Math. Soc.. 59-No.2. 396-406 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Saito: "Hypergeometric polynomials and integer programming"Compositio Math.. 115-No.2. 185-204 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Nishiyama: "Bernstein degree of singular unitary highest weight representations of the metaplectic group"Proc. Japan Acad.. 75 No.2. 9-11 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yamashita, H.: "Associated variety, Kostant-Sekiguchi correspondence, and locally free U(π)-action on Harish-Chandra modules"J. Math. Soc. Japan. 51・1. 129-149 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yamashita, H.: "Gereralized Whittaker models and π-homology for some small irreducible representations of simple Lie groups"数理解析研究所購究録. 1124. 86-105 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yamashita, H.: "Two dual pair methods in the study of generalized Whittaker models for unitary highest weight modules"Proceedings of JSPS-DFG workshop "Infinite-dimensional Harmonic Analysis". (発表予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yamashita, H.: "Reduced Schur functions and Littlewood-Richardson coefficients"J. of London Math. Soc.(2). 59・2. 396-406 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Nishiyama, T.: "Bernstein degree of singular unitary highest weight representations of the metaplectic group"Proc. Japan Acad.. 75・2. 9-11 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Saito, M.: "Hyper geometic polynomials and integer programming"Compositio Math. 115・2. 185-204 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 山下 博: "Description of the associated varieties for the discrete series representations of a semisimple Lie group" Comment.Math.Univ.St.Paul.47・1. 35-52 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 行者明彦: "Associated variety, Kostant-Sekiguchi correspondence, and locally free U(π)-action on Harish-Chandra modules" J.Math.Soc.Japan. 51・1. 129-149 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 森田英章: "Higher Specht polynomials for the complex reflection group G(r, p, n)" Hokkaido Math.J.27・3. 505-515 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 齋藤睦: "Grobner deformations of regular holonomic systems" Proc.Japan Acad.74・7. 111-113 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 辰鳥伸彦: "On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms" J.Math.Kyoto.Univ.38・3. 551-578 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 行者明彦: "Associated variety,Kostant-Sekiguchi correspondence,and locally free U(n)-action on Horish-Chandra modules" J.Math.Soc.Japan. 51・1(in press). (1999)

    • Related Report
      1997 Annual Research Report
  • [Publications] 平井武: "Relations between unitary representations of diffeomorphism groups and those of infinite symmetric group or of related permutation groups" J.Math.Kyoto Univ.37・2. 261-316 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 中島達洋: "On reduced Q-functions" Hiroshima Math.J.27・3. 407-414 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi