• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Modern development of special functions - approach from the representation theory and the integrals

Research Project

Project/Area Number 09440020
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyushu University

Principal Investigator

MIMACHI Katsuhisa  Kyushu University, Graduate School of Mathematics, Associate Professor, 大学院・数理学研究科, 助教授 (40211594)

Co-Investigator(Kenkyū-buntansha) YAMADA Yasuhiko  Kobe University, Graduate School of Science and Technology, Associate Professor, 大学院・自然科学研究科, 助教授 (00202383)
NOUMI Masatoshi  Kobe University, Graduate School of Science and Technology, Professor, 大学院・自然科学研究科, 教授 (80164672)
HANAMURA Masaki  Kyushu University, Graduate School of Mathematics, Associate Professor, 大学院・数理学研究科, 助教授 (60189587)
渡辺 文彦  九州大学, 大学院・数理学研究科, 助手 (20274433)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥9,800,000 (Direct Cost: ¥9,800,000)
Fiscal Year 1999: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1998: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1997: ¥3,800,000 (Direct Cost: ¥3,800,000)
Keywordshypergeometric functions / integrals / representation theory / Macdonald polynomials / QKZ equation / Selberg integrals / de Rham theory / Painleve equation / de Rham理論 / q-差分系 / Hecke環 / セルバーグ型積分
Research Abstract

The purpose of the present research was to settle the viewpoint to unify the theory of hypergeometic function associated with the root system and the theory of integrals. Concrete theme of this work was the following : 1. De Rham theory (Study of homology and cohomology associated with Selberg type integrals, which appear as the spherical functions of A type), 2. Relationship between the representations of several kinds of algebras (Hecke algebras and so on) and the integrals, 3. Application to Painleve equations (special polynomials such as Okamoto polynomials), 4. Application to mathematical physics (Calogero system, correlation functions in conformal field theory or solvable lattice models). The results of the head investigator were mainly about 1 and 2, those of Hanamura were about 2, those of Noumi and Yamada were about 3. Matsui's help was valuable in the study of 4, Ochiai's in 2 and 4, Wakayama's in 2, Kato's in 1.
Anyway, we have obtained a lot of results through the period of the present research project. As an evidence, many of papers had appeared in the journal of excellent level.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] K. Mimachi: "Askey-Wilson polynomials by means of a q-Selberg type integral"Adv. In Math. 147. 315-327 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Integral representations of the Wilson polynomials and the continuous dual Hahn polynomial"Adv. In Appl. Math.. 23. 340-359 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Amultidimensional generalization of the Barnes integral and the continuous Hahn polynomial"Jour. Math. Anal. And Appl.. 243. 67-76 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Barnes type integral and the Meixner-Pollaczek polynomials"Lett. Math. Phys.. 48. 365-373 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Eigenfunctions of Macdonald's q-difference operator for the root system of type Cn"Jour. Funct. Anal.. 163. 272-278 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Askey-Wilson polynomials by means of a q-Selberg type integral"Adv. In Math.. 147. 315-327 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Integral representations of the Wilson polynomials and the continuous dual Hahn polynomials"Adv. In Appl. Math.. 23. 340-359 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "A multidimensional generation of the Barnes integral and the continuous Hahn Polynomial"Jour. Math. Anal. And Appl.. 234. 67-76 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Barnes type integral and the Meixner-Pollaczek polynomials"Lett. Math. Phys.. 48. 365-373 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "Eigenfunctions of Macdonald's q-difference operator for the root system of type CィイD2nィエD2"Jour. Funct. Anal.. 163. 272-278 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "A solution of the quantum Knizhnik Zamolodchikov equation of type CィイD2nィエD2"Commun. Math. Phys.. 197. 229-246 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "A new derivation of the inner product formula for the Macdonald symmetric polynomials"Composit. Math.. 113. 117-122 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Mimachi: "The little q-Jacobi polynomial associated with a q-Selberg integral"Funct. Ekvac.. 41. 91-100 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Mimachi: "Askey-Wilson polynomials by means of a q-Selberg type integral"Adv,in Math. 147. 315-327 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Mimachi: "Integral representations of the Wilson polynomials and the contimuous dual Hahn"Adv,in Math. 23. 340-359 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Mimachi: "A multidimensional generalization of the Barnes integral and the continuous Hahn polynomial"Jour,Math,Anal,and Appl,. 234. 67-76 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Mimachi: "Barnes type integral and the Meizner-Pollaczek polynomials"Lett,Math,Phys.. 48. 365-373 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Mimachi: "Eigenfunctions of Macdonald's q-difference operator for the root system of type C_n"Jour,Funct,Anal,. 163. 272-278 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Mimachi: "Eigenfunctions of Macdonald‘s q-difference operator for the root system of type C_n" Jour.Funct.Anal.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Mimachi: "A solution of the quantum Knizhnik Zamolodchikov equationof type C_n" Commun.Math.Phys.197. 229-246 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Mimachi: "A new derivation of the inner product formula for the Macdonald symmetric polynomealss" Composit.Math.113. 117-122 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Mimachi: "The little q-Jacobi polynomial associated with a q-Selberg integral" Funkt.Ekvac.41. 91-100 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Mimachi: "A reproducing kernel for nonsymmetric Macdonald polynomials(with M.Noumi)" Duke Math.J.91. 621-634 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi