• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Gemetric Structures on Manifolds and Global Analysis

Research Project

Project/Area Number 09440034
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKanazawa University (1998-1999)
Nara Women's University (1997)

Principal Investigator

KOBAYASHI Osamu  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (10153595)

Co-Investigator(Kenkyū-buntansha) FUJIOKA Atsushi  Kanazawa University, Faculty of Science, Instructor, 理学部, 助手 (30293335)
KITAHARA Haruo  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (60007119)
KODAMA Akio  Kanazawa University, Faculty of Science, Professor, 理学部, 教授 (20111320)
KATO Shin  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (10243354)
KATAGIRI Minyo  Nara Women's University, Faculty of Science, Associate Professor, 理学部, 助教授 (60263422)
石本 浩康  金沢大学, 理学部, 教授 (90019472)
山下 靖  奈良女子大学, 理学部, 講師 (70239987)
小林 毅  奈良女子大学, 理学部, 教授 (00186751)
落合 豊行  奈良女子大学, 理学部, 教授 (70016179)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥9,200,000 (Direct Cost: ¥9,200,000)
Fiscal Year 1999: ¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 1998: ¥2,600,000 (Direct Cost: ¥2,600,000)
Fiscal Year 1997: ¥4,100,000 (Direct Cost: ¥4,100,000)
Keywordsconfomal structure / conformal connection / Moebius geometry / projective structure / scalar curvature / Ricci curvature / Schwarzian / vertex / スカラー曲率方程式 / ワイル構造 / ヤン・ミルズ方程式 / 極小曲面 / 3次元多様体
Research Abstract

Among many geometric structures of a manifold we are mainly interested in those structures which are closely related to the conformal geometry. Here are some of main results of this research project :
1. The scalar curvature equation. This equation describes the scalar curvature under a conformal change of a Riemannian metric. A systematic analysis has been done on non-compact manifolds, and the space of complete confomal metrics with prescribed scalar curvature is made clearer.
2. The Weyl structure. This is a torsion free affine connection that is compatible with a given conformal class. It is shown that the Ricci curvature is a complete invariant of a Weyl structure. Also conformally flat Einstein-Weyl structures on compact manifolds are classified.
3. Moebius geometry. The minimum number of vertices of a regular closed curve on the sphere with given topological type is completely determined in the case when the curve has at most five self-inter-sections. Also we introduce a Schwarzian derivative of a regular curve. This leads to new proofs of injectivity results of Nehari type. A gist is that a confomal strucutre of a manifold induces an integrable projective structure of a regular curve on the manifold. It is shown that injectivity of the projective development map of the curve implies the injectivity of the immersion to Moebius spaces.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report

Research Products

(28 results)

All Other

All Publications (28 results)

  • [Publications] O. Kobayashi: "Vertices of Curves With Complementary Shells"Kobe J. Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Fujoka: "Surfaces with harmonic inverse mean curvature in space forms"Proc. Amer. Math. Soc.. 127. 3021-3025 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Katagiri: "On compact conformally flat Einstein-Weyl manifolds"Proc. Japan Acad.. 74A. 104-105 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Katagiri: "On the uniqueness of a Weyl structure with prescribed Ricci curvature"Tokyo J. Math.. 21. 453-455 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] S. Kato: "Uniqueness of solutions of an elliptic singular boundary value problem"Osaka J. Math.. 35. 279-302 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 加藤 信: "開リーマン多様体上のスカラー曲率の方程式"数学. 51. 225-240 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] O. Kobayashi: "Vertices of Curves With Complementary Shells"Kobe J. Math.. 15. 59-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Fujioka: "Surfaces with harmonic inverse mean curvature in space forms"Proc. Amer. Math. Soc.. 127. 3021-3025 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Katagiri: "On compact conformally flat Einstein-Weyl manifolds"Proc. Japan. Acad.. 74A. 104-105 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Katagiri: "On the uniqueness of a Weyl structure with prescribed Ricci curvature"Tokyo J. Math.. 21. 453-455 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] S. Kato: "Uniqueness of solutions of an elliptic singular boundary value problem"Osaka J. Math.. 35. 279-302 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] S. Kato: "The scalar curvature equation on non-compact manifolds"Sugaku. 51. 225-240 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Katagiri: "On the topology of the moduli space of negative constant scalar curvature"Proc. Japan Acad.. 75A. 126-128 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 加藤信: "開リーマン多様体上のスカラー曲率方程式"数学. 51. 225-240 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] A. Kodama: "A characterization of certain weakly pseudo convex domains"Tohoku Math. J.. 51. 55-64 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K. Kawagoe: "S Keins associated with Homfly and Kauffman Polynomials and Invariants of Graphs"Archir der Mathemtic. (予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] A Fujioka: "Surfaces with harmonic inverse mean curvature in space forms"Proc. Amer. Math. Soc.. 127. 3021-3025 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] A. Fujioka: "On some generalizations of constant mean curvature surfaces"Lobachevskii J. Math.. 3. 73-95 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] O.Kobayashi: "Vertices of curves with complementary shells" Kobe J.Math.15. 59-65 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Katagiri: "On compact conformally flat.Einstein-Weyl manifolds" Proc.Japan Acad.Ser.A. 74. 104-105 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Kato: "Uniqueness of solutions of an elliptic singular boundary value problem" Osaka J.Math.35. 279-302 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Kato: "Nonexistence of subsolutions of nonlinear elliptic equation on bounded domain in a Riemannian manifold" Hiroshima Math.J.28. 419-435 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Katagiri: "Estimate of singularities of the Yang-mills flow" Functional Analysis and Global Analysis. 162-166 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] M.Katagiri: "On deformation of Einstein-Weyl structures" Tokyo J.Math. (to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] S.Kato et al: "An inverse problem of the flux for minimal surfaces" Indiana Univ.Math.J.46. 529-559 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] S.Kato: "Structure theorems of the scalaw curvature equation on submanifolds of a cempact Riemannian in manifold" Tsukuba J.Math.21. 159-168 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] S.Kato et al: "General existence of minimal surfaces with prescribed flux II" Topics in complex analysis,defferential geometry and mathematical physics. 116-135 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Kobayashi and D.Heath: "Essential tangle decomposition from thin position of a link" Pacific J.Math.179. 101-117 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi