• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on symmetric positive systems

Research Project

Project/Area Number 09440059
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionOsaka University

Principal Investigator

NISHITANI Tatsuo  Osaka University, Grad.Sch.of Sci., Professor, 大学院・理学研究科, 教授 (80127117)

Co-Investigator(Kenkyū-buntansha) MANDAI Takeshi  Gifu University, Fac.of Eng., Associate Professor, 工学部, 助教授 (10181843)
ICHINOSE Wataru  Shinsyu University, Fac.of Sci., Professor, 理学部, 教授 (80144690)
KAJITANI Kunihiko  Tsukuba University, Fac.of Math., Professor, 数学系, 教授 (00026262)
SUGIMOTO Mitsuru  Osaka University, Grad.Sch.of Sci., Associate Professo, 大学院・理学研究科, 助教授 (60196756)
MATSUMURA Akitaka  Osaka University, Grad.Sch.of Sci., Professor, 大学院・理学研究科, 教授 (60115938)
松本 和一郎  龍谷大学, 理工学部, 教授 (40093314)
満渕 俊樹  大阪大学, 大学院・理学研究科, 教授 (80116102)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 1998: ¥4,000,000 (Direct Cost: ¥4,000,000)
Keywordssymmetric system / boundary matrix / weight function / a priori estimate / blow up
Research Abstract

(i) We have studied symmetric positive systems on a bounded open set assuming the following conditions on the boundary matrix. That is, outside a embedded submanifold of codimension 1 in the boundary, the rank of the boundary matrix is constant. In this case, we found a suitable weight function which is positive outside the above mentioned submanifold so that an a priori estimate for solutions to the boundary value problem is obtained. Using this a priori estimate, we have proved the existence of solution to the boundary value problem which is regular with respect to the normal direction. This is very important to applications to non-linear perturbations. With the aid of this a priori estimate and the existence of smooth solutions, we succeeded to get the behavior of weak solutions near the reference embedded submanifold, which is very sharp as several examples show. These results, as far as concerning two dimentional domains, are fairly satisfactory. If we apply this result to so called Triconi's equation, we get another proof of the uniqueness of solution. As for 3 dimentional domains, there remains one fundamental case which we cound not treat.
(ii) In the case that the boundary matrix is zero on the submanifold where the rank of the boundary matrix changes, we clarified the structure of the boundary value problem. On the blown up manifold along the submanifold, we can get an a priori estimate with a simple weight function. Using this a priori estimate in the blown up space, we proved the existence of smooth solution even with respect to the normal direction. Applying the same method that we employed in (i), we are able to examine the behavior of weak solutions near the submanifold. Applying this result we obtained a priori estimate for the linealized MHD equation under some boundary condition which has not been treated before.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] T.Nishitani: "Hyperbolicity of two by two systems with two independent variables" Comm.P.D.Es.23・5. 1061-1110 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Nishitani,M.Takayama: "Characteristic initial boundary value problems for symmetric hyperbolic systems" Osaka J.Math.35・3. 629-657 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Sugimoto: "Estimates for hyperbolic equations of space dimension 3" J.Func.Anal.160・2. 382-407 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kajitani,M.Mikami: "The Cauchy problem for degenerate parabolic equations in Gevrey class" Ann.Scuola Norm.Sup.Pisa. 26・2. 383-406 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] W.Ichinose: "On the formulation of the Feynman path integral throug brokeu Dine paths" Comm.Math.Phys.189. 17-33 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Mandai: "Existence of distribution null-solutions for every Fuchian partial differential operator" J.Math.Sci.Univ.Tokyo. 5. 1-18 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Nishitani: "Hyperbolicity of two by two systems with two independent variables" Comm.P.D.E_9.23・5. 1061-1110 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Nishitani, M.Takayama: "Characteristic initial boundary value problems for symmetric hyperbolic systems" Osaka J.Math.35・3. 629-657 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Sugimoto: "Estimates for hyperbolic equations of space dimension 3" J.Func.Anal.160・2. 382-407 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kajitani, M.Mikami: "The Cauchy problem for degenerate parabolic equations in Gevvey class" Ann.Scuola.Norn.Sup.Pisa. 26・2. 383-406 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] W.Ichinose: "On the formulation of the Feynman path integral throug broken line paths" Comm.Math.Phys.189. 17-33 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Mandai: "Existence of distribution null-solutions for every Fuchian partial differential equation" J.Math..Sci.Univ.Tokyo. 5. 1-18 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.Nishitani: "Hyperbolicity of two by two systems with two independent variables" Comm.P.D.Es.23・5. 1061-1110 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nishitani,M.Takayama: "Characteristic initial boundary value problems for symmetric hyperbolic systems" Osaka J.Math.35・3. 629-657 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Sugimoto: "Estimates for hyperbolic equations of space dimension 3" J.Func.Anal.160・2. 382-407 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Kajitani,M.Mikami: "The Cauchy problem for degenerate parabolic equations in Gevrey class" Ann.Scuola Norm.Sup.Pisa. 26・2. 383-406 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] W.Ichinose: "On the formulation of the Feynman path integral throug broken Line pofus" Comm.Math.Phys.189. 17-33 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Mandai: "Existence of distribution null-solutions for every Fuchian partial differential operetor" J.Math.Sci.Univ.Tokyo. 5. 1-18 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nishitani: "Stability of symmetric systems under hyperbolic perturbations" Hokkaido Math.J.26・3. 509-527 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Nishitani: "Well-posedness of the Cauchy problem for a class of hyperbolic operators with a stratified multiple variety" J.Math.Kyoto Univ.37・1. 1-34 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Nishitani: "Regularity of solutions to charcateristic boundary value problem for symmetric systems" Geometrical Optics and Related Topics. 319-361 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Mandai: "A construction of asymptotic solutions and the existence of smooth null-solutions for a class of non-Fuchsian partial differeutial operators" Nagoya Math.J.145・1. 125-142 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Morimoto: "The positivity of Schrodinger operators and the hypoellipticity of second order degenerate elliptic operators" Bull.Sci.math.121・3. 507-547 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] K.Kajitani: "The Cauchy problem for Schrodinger type equations with variable coefficients" J.Math.Soc.Japan. 50・1. 179-202 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi