• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fractal and Stochastic Process

Research Project

Project/Area Number 09440086
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOsaka City University

Principal Investigator

KAMAE Teturo  Osaka City Univ., Prof., 理学部, 教授 (80047258)

Co-Investigator(Kenkyū-buntansha) SAKAN Kenichi  Osaka City Univ., Associated Prof, 理学部, 助教授 (70110856)
IMAYOSHI Yoichi  Osaka City Univ., Prof., 理学部, 教授 (30091656)
KOMATSU Takasi  Osaka City Univ., Prof., 理学部, 教授 (80047365)
伊達山 正人  大阪市立大学, 理学部, 講師 (10163718)
藤井 準二  大阪市立大学, 理学部, 講師 (60117968)
Project Period (FY) 1997 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥7,400,000 (Direct Cost: ¥7,400,000)
Fiscal Year 2000: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1999: ¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 1998: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1997: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywordsfractal / weighted substitution / colored tiling / homogeneous cocycle / self-similar process / 0-entropy / deterministic Brownian motion / 自己相似確率過程 / O-エントロピー / 0-エントロピー
Research Abstract

In this research, we studied among all a deterministic version of the Ito calculus.
Deterministic Brownian motions are stochastic processes with noncorrelated, stationary and strictly ergodic increments having 0-entropy and 0-expectation. The self-similarity of order 1/2 follows from these properties. Such processes have a lot of variety and have different properties. It is not the case of the Brownian motion where the process is characterized as a process with stationary and independent increments with 0-expectation and standard variance.
Among the deterministic Brownian motions, the simplest one is the N-process (N_t ; t∈R). We consider a process Y_t=H (N_t, t), where the function H(x, s) is twice continuously differentible in x and once continuously differentible in s and H_x(x, s)>0. The function H is consisered completely unknown except for these properties. We want to predict the value Y^c from the observation Y_J : ={Y_t ; t∈J}, where J=[a, b] and a<b< c. We proved that there exists a estimator Y_c such that
<<numerical formula>>
as c↓b with the following C (b) as the constant in O ( ) :
<<numerical formula>>

Report

(5 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] T.Kamae: "Linear expansions, sfrictly agodic homogeneous cocycles-"Israel J.Moth.. 106. 313-337 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Dateyama & T.Kamae: "On direct sum decomposition of integers and Y,Ito's conjecture"Tokyo J.Math.. 21-2. 433-440 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae,Jim-Ichi Tamura Zhi-Ying Wen: "Hankel determinants for Fibonacci word and Pade approximation"Acta Arithmetica. 89-2. 123-161 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] N.Gjmi & T.Kamae: "Cobounday on colored tiling space as Rauzy fractal"Indogationes Mathematicae. 10-3. 407-421 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae: "Stochastic analysis based on deterministic Brownian motion"Israel J.Math. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae,J.M.Deshou Ileus J-M.Allouche,T.Koyanagi: "Automata, algebraicity and distribution of sequences of powers"Ann.Inst.Fourien. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae: "Linear expansions, strictly ergodic homogeneous cocycles and fractals"Israel J.Math.. 106. 313-337 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae (with M.Dateyama): "On direct sum decomposition of integers and Y.Ito's conjecture"Tokyo J.Math.. 21-2. 433-440 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae (with Jun-ichi Tamura and Zhi-Ying Wen): "Hankel determinants for the Fibonacci word and Pade approximation"Acta Arith.. LXXXIX.2. 123-161 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae (with Nertila Gjini): "Coboundary on colored tiling space as Rauzy fractal"Indagationes Mathematicae. 10-3. 407-421 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae: "Stochastic analysis based on deterministic Brownian motion"Israel J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae (with J-P.Allouche, J-M.Deshouillers and T.Koyanagi): "Automata, algebraicity and distribution of sequences of powers"Ann.Inst.Fourier. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Komatsu (with A.Takeuchi): "On the smoothness of PDF of solutions to SDE of jump type"International Journal of Differential Equations and Applications. 2-2. 141-197 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Komatsu (with A.Takeuchi): "Simplified probablistic approach to the Hormander theorem"Osaka J.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kamae: "Stochastic analysis based on deterministic Brownian motion"Israel.J.Math.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kamae (共著): "Automata, algebraicity and distribution of sequmcer of powers"Ann.Inst.Fourier. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Komatsu (共著): "Simplified probablistic approach to the Hormander theorem"Osaka J.Math.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Sakan (共著): "A pseudo-metric on the space generalized quasisymmetric auto morphisms of Jodan curve"Proc.2nd ISAAC Congress. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Komori: "A note on paper of Sasaki"Proc.2nd ISAAC Congress. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kamae: "Lineer expansions, strictly engodic homogeneou* cocycles and fractals"Israel J. Math.. 106. 313-337 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Dateyama, T.Kamae: "On direct sum decomposition of integers and Y. Ito's conjecture"Tokyo J. Math.. 21-2. 433-440 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kamae, Jun-ichi Tamura, Zhi-Yin Wen: "Hankel determinats for the Fibonacci word and Pade approxination"Acta Arithmetica. 89-2. 123-161 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kamae, N.Gjini: "Coboundary on colored tiling space as Rauty fractal"Indagationes Mathematicae. 10-3. 407-421 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kamae: "Linear expansions,strictly ergodic homogencous cocycles and fractals" Israel J.Math.106. 313-337 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Dateyama,T.Kamae: "On direct sum decomposition of integers and Y.Ito's conjecture" Tokyo J.Math.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Takahashi,J-M.Dumont T.Kamae: "Minimal cocycles with scaling property and substitution" Israel J.Math.95. 393-410 (1996)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.kamae,M.Keane: "A simple proof of the ratio ergodic theorem" Osaka J.Math.34. 653-657 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Hiraba: "Asymptotic behavior of hitting rates for absorbing-" Osaka J.Math.34. 905-921 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Kamae,Zhi-yin-Wen-Jun-ichi Tamura: "Hankel determinants for the Fibonacci word and Pade' approximation" Acta Arith.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Kamae & M.Keane: "A Simple Proof of the ergodic theorem" Osaka J.Math.(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] M.Dateyama & T.Kamae: "On direct sum decomposition of integers and Y.Ito'S conjecture" Tokyo J.Math.(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Kamae: "Linear expansions,strictly ergodic homogeneous cocycles and fractals" Israel J.Math.(to appear).

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi