• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ion Selective Transport Across Liquid Membrane Mimicking Renal Tubule Function

Research Project

Project/Area Number 09450307
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 生物・生体工学
Research InstitutionWaseda University

Principal Investigator

SAKAI Kiyotaka  Waseda University, Science and Engineering, Professor, 理工学部, 教授 (00063727)

Co-Investigator(Kenkyū-buntansha) 小久保 謙一  早稲田大学, 理工学部, 助手 (20287965)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1998: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsArtificial kidney / Dialysis / Urea / Ion / Electrodialysis / Extraction / Surfactant / Chelate
Research Abstract

Further improvement of hemodialysis treatments with artificial kidney requires the development of a new renal tubule system that removes only uremic toxins from the blood, or recovers essential ions and solutes from outfiowing diatysate and returns them to the blood.
The objective of the present study is to separate ions (Na^+, Cl^-) and urea and to recover the ions from the outfiowing dialysate. A potential difference was applied as a driving force using an ion selective liquid membrane to separate ions (Na^+, Cl^-) and urea and to concentrate the ions by dialysis. A PTFE membrane, impregnated with an organic solution in which reversed micelles were formed or chelate was dissolved was used as a liquid membrane. Using a reversed micelle liquid membrane, the transfer rate of Na^+ and Cl^- was higher than that of urea, and increased by applying the potential difference. Using a chelate liquid membrane, its membrane stability was higher than that of the reversed micelle liquid membrane. On … More the other hand, when no potential difference was applied, Na^+ and Cl^- permeated across the liquid membrane as fast as urea. Then a three chambers batch cell mimicking an electrodialysis apparatus was devised using the reversed micelle liquid membrane. When a potential difference was applied between outside two chambers as a driving force, Na^+ and Cl^- concentrations in the middle cell increased and urea concentration was kept to be constant. Therefore, repeated operation or continuous operation with the same cells connected makes it possible to separate ions (Na^+, Cl^-) and urea and concentrate ions (Na^+, Cl^-) efficiently.
In conclusion, separation of ions (Na^+, Cl^-) and urea and concentration of ions (Na^+, Cl^-) in NaCI and urea solution with the three chambers batch cell are feasible using the reversed micelle liquid membrane, and the function of the renal tubule can be modeled and essential ions and solutes can be recovered from outflowing dialysate and returned to the blood. Less

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi