• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Number Theory in positive characteristics -New Methods

Research Project

Project/Area Number 09640036
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTottori University

Principal Investigator

HARASE Takashi  Tottori Univ., Dept. of Education, Professor, 教育地域科学部, 教授 (90016056)

Co-Investigator(Kenkyū-buntansha) GOTO Kazuo  Tottori Univ., Dept. of Education, Assistant Professor, 教育地域科学部, 助教授 (00140533)
KOJIMA Masatoshi  Tottori Univ., Dept. of Education, Professor, 教育地域科学部, 教授 (90032317)
KURIBAYASHI Yukio  Tottori Univ., Dept. of Education, Professor, 教育学部, 教授 (30031909)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
Keywordsfinite field / positive characteristic / algebraic / rational series / recognizable / discrepancy / language / uniform distribution / recognizable / continued fraction / code theory / random number / positivl charateristic / algebiaic / rationcl series / rewgnizable / cude theory / rational series / continned fraction / F_p
Research Abstract

We define a mapping Φ from the monomials in κ[[z]] to XィイD3*(/)qィエD3ィイD2mィエD2 by the following : if l ≠ 0 then
Φ(zィイD3i1(/)1ィエD3zィイD3i2(/)2ィエD3...zィイD3im(/)mィエD3) = xィイD2rィエD2ィイD21lィエD2ィイD1rィエD1ィイD22l...ィエD2ィイD1rィエD1ィイD2mlィエD2xィイD2rィエD2ィイD21,l-1ィエD2ィイD1rィエD1ィイD22,l-1...ィエD2ィイD1rィエD1ィイD2m,l-1ィエD2...xィイD2rィエD2ィイD211ィエD2ィイD1rィエD1ィイD221...ィエD2ィイD1rィエD1ィイD2m1ィエD2,
and Φ(1) = 1, where XィイD2qィエD2ィイD1mィエD1 = {xィイD2rィエD2ィイD21ィエD2ィイD1rィエD1ィイD22....ィエD2ィイD1rィエD1ィイD2mィエD2|0≦rィイD21ィエD2,rィイD22ィエD2,...,rィイD2mィエD2≦q-1} with indeterminates xィイD2rィエD2ィイD21ィエD2ィイD1rィエD1ィイD22...ィエD2ィイD1rィエD1ィイD2mィエD2.
Extending Phi-linearly, our main results are the followings
Theorem. If f ∈ FィイD2qィエD2[[z]] is algebraic, then Φ(f) is rational in FィイD2qィエD2≪XィイD2qィエD2ィイD1mィエD1≫.
Corollary 1. If f = ΣィイD2nィエD2aィイD2nィエD2zィイD1nィエD1 ∈ FィイD2qィエD2[[zィイD21ィエD2,aィイD22ィエD2,...,zィイD2mィエD2]] is algebraic, then it follows that ΣィイD5nィエD5aィイD2nィエD2zィイD1|n|ィエD1 ∈ FィイD2qィエD2(z).
Here |n| denotes the length of digits in base q expression of n.
Investigator K.Goto obtained several new results on uniform distribution theory.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] T. Harase: "Rationality and Algebraicity of Formal …"J. of Fac. of Ed. Tottori Univ.. 47. 1-4 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Harase: "Algebraicity and Rationality of Formal …"Fimite Fields and their Application. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Kojima: "Endomorphism Rxy・Rzw"J. of Fac. of Ed. Tottori Univ.. 46. (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Goto: "Heuristic Asymptotic Formulae Concerning …"J. of Fac. of Ed. Tottori Univ.. 46. 17-25 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Goto: "On Monotone Almost (P, μ)-u.d. …"Math. Nachr.. 205. 5-17 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Goto: "The Discrepancy of the sequence (nα+(logn)β)"Acta. Math. Hungar.. 85. 39-47 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Harase: "Rationality and Algebraicity of Formal Power Series in Fp[[x]]"J. of Fac. of Ed. Tottori Univ. Nat. Sci.. Vol.47, No.1. 1-4 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Harase: "Algebraicity and Rationality of Formal Power Series over Fq"Finite Fields and their Applications. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Kojima: "Endomorphism RィイD2xyィエD2・RィイD2zwィエD2"J. of Fac. Ed. Tottori Univ. Nat. Sci.. Vol.46, No.2. (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Goto: "Heuristic Asymptotic Formulae Concerning Prime Values of Polynomials (with K. Shimizu)"J. of Fac. of Ed. Tottori Univ.. Vol.46, No.1. 17-25 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Goto: "ΣィイD3∞(/)n=1ィエD3(aィイD2nィエD2cos nx+bィイD2nィエD2 sin nx) with ... is not Borel summable and its related results"J. of Fac. Ed. Tottori Univ. Nat. Sci.. Vol.46, No.2. 45-50 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Goto: "The estimation of ∫ィイD3b(/)aィエD3g(x)eィイD1ith(x)ィエD1dx using saddle point method"J. of Fac. Ed. Tottori Univ. Nat. Sci.. Vol.47, No.2. 81-89 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Goto: "On Monotone Almost (P,μ) - u. d. Mod 1 Sequence"Math. Nachr.. Vol.205, No.1. 5-17 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Goto: "The Discrepancy of the sequence (nα+(log n)β)"Acta Math. Hunger.. Vol.86. 39-47 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 原瀬巍: "Algebraicity and Relationality of Formal Power Series over Fq"Finite fields and their applications. accept.

    • Related Report
      1999 Annual Research Report
  • [Publications] 後藤和雄: "On Monotone almost (p,u)-u.d.mod 1 sequence"Math.Nachrichten. 205. 5-17 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 後藤和雄: "The disuepancy of the sequence(nα+1logn)β)"Acta Math.Hungarica. 86. 39-47 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 原瀬 巍: "Rationality and Algebaicity of Farmal Power Seires" J.of Fae .of Edu.Tottori Univ.vol47.1. 1-4 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 後藤-清水: "A pruperty of integers related to quadratie field" J.of Fae .of Edu.Tottori Univ.vol47.1. 5-12 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 後藤 和雄: "The estimation of ∫^b_ag(x)e^<ith(x)>dx using・・・" J.of Fae.of Edu.Tottori Univ.vol47.2. 81-89 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 原瀬 巍: "Rationality and Algebraicity of Formal Power Series in F_p[[x]]" J.of Fac.of Education Tottori Univ.vol.47(受理). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 栗林 幸男: "擬Fourier変換について" 京都大学数理解析研究所講究録. (受理).

    • Related Report
      1997 Annual Research Report
  • [Publications] 小島 政利: "Endomorphism R_<XY>・R_<ZW>" J.of Fac.of Education Tottori Univ.vol.46, No.2. 39-44 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 後藤 和雄: "Heuristic Asymptotic Formula Concerning Prime Values of Polynomials" J.of Fac.of Education Tottori Univ.vol.46, No.1. 17-25 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 後藤 和雄: "An example of Σ^∽_<nz1>(a_n cos nX+b_n sin nX)with…" J.of Fac.of Education Tottori Univ.vol.46, No.2. 45-50 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi