• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Modular Conjecture

Research Project

Project/Area Number 09640064
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionChuo University

Principal Investigator

MOMOSE Fumiyuki  Chuo University, Faculty of Science & Eng., Professor, 理工学部, 教授 (80182187)

Co-Investigator(Kenkyū-buntansha) HASEGAWA Yuji  Waseda University, J.S.P.S., 理工学部, 学振特別研究員 (30287982)
HASHIMOTO Ki-ichirou  Waseda University, Professor, 理工学部, 教授 (90143370)
SEKIGUCHI Tsutomu  Chuo University, Faculty of Science & Eng., Professor, 理工学部, 教授 (70055234)
佐武 一郎  中央大学, 理工学部, 教授 (00133934)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 1999: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1997: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsModularity Conjecture / Moduli / Abelian variety / GLィイD22ィエD2-type / Galois representation / モジュラー予想 / モジュラリティ / (1)-curve / QM-curue
Research Abstract

The modularity conjecture (Serre-Ribet) states that an abelian variety of GLィイD22ィエD2-type over Q is isogenous (over QィイD4-ィエD4) to a Q-simple factor of the jacobian variety of the modular courve XィイD21ィエD2 (N) for some integer N. We study this conjecture. Applying the deformation theory of Galois representation of Wiles, Taylor, Diamond and Gonrad, we proved this conjecture for the objects which have the extra twistings under some conditions. For a given prime ideal, if the objects has potentially "ordinary" reduction, we could improve the condition of modularity, using the results of Skinner-Wiles. If the objects has potentially good reduction of height 2, we proved the modularity under (natural) condition, using the results of Conrad-Diamond-Taylor.
We also got the moduli of the abelian varieties of GLィイD22ィエD2-type over Q (up to isogeny). We made use of the quotient of Shimura varieties of GLィイD22ィエD2-type bye some group of automorphsms (over QィイD4-ィエD4). We generalized the local tree of Elkies, and combined it with the descent up to isogeny of Ribet-Pyle. Further, we studies the arithmetic geometry of the moduli space (over Z). Using these results, we can apply the modularity conditions.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Y. Hasegawa, K, -I. Hashimoto, F. Momose: "Modularity conjecture for Q-curves and QM-curves"International Journal of Mathematics. Vol.10 No.1. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yuji Hasegawa, Ki-ichirou Hashimoto: "Modularity conjecture for Q-curves and QM-curves"International J. Math.. Vol.10-7. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] "Moduli and Modularity of (Q,F)-abelian varieties of GLィイD22ィエD2-type"Toronto Univ.. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Hashimoto: "Q-curves of degree 5 and jacobian surface of GLィイD22ィエD2-type"Manuscripta Math. 98. 165-182 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Hashimoto: "On the Sato-Tate Conjecture for QM-curves of Genus Two, (with Hiroshi Tsunogai)"Mathematics of Computation. 68, No.228. 1649-1662 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Hashimoto: "Inverse Galois Problm for Dihedral Groups (with K. Miyake)"Number Theory and its Applications ed. By K. Gyory and S. Kanemitsu, Kluwer. 165-181 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Hashimoto: "Linear relations of theta series attached to Eichler orders of quaternion algebras, Contemporary Math. 249(AMS)"Proceedings of the Conference on Integral Quadratic Forms and lattices held in Soeul. 262-302 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa: "Hyperelliptic modular curves XィイD1*ィエD1ィイD20ィエD2(N)"Acta Arith. 81. 369-385 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa: "Q-curves over quadratic fields"manuscripta mathematica. 94. 347-364 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa: "Trigonal modular curves (with M. Shimuar)"Acta Arith. 88. 129-140 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa: "Hyperelliptic quotients of modularcurves XィイD20ィエD2(N) (with M .Furumoto)"Tokyo J.of Math.. 22. 105-125 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa: "Trigonal modular curves XィイD1+dィエD1ィイD20ィエD2(N) (with M. Shimura)"Proc of Japan Acad. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hasegawa, K,-1.Hashimoto F.Momose: "Modularity conjecture for Q-curves and QM-curves"International Journal of Mathematics. Vol.10 No.1. 1011-1036 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.CURUEK.Hashimoto, F.Momose, Y.Hasegawa:

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi