• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of algebraic number fields related to Iwasawa invariants

Research Project

Project/Area Number 09640065
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokai University

Principal Investigator

HORIE Kuniaki  Tokai University, School of Science, Associate Professor, 理学部, 助教授 (20201759)

Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsIwasawa lambda-invariant / Iwasawa mu-invariant / algebraic num-ber field / totally real field / CM-field / infinite extension / Iwasawa theory / number knot
Research Abstract

In Bulletin of the London Mathematical Society, 29 (1997), p. 367, the investigator corrected the error contained in the proof of a lemma of his earlier paper 'Two aspects of the relative lambda-invariant'. For each number field F, let F_<*, 3>, denote the basic Z_3-extension over F, lambda_3(F) the Iwasawa A-inveriant of F_<*, 3>, _<mu3> (F) the Iwasawa mu-invariant of F_<*, 3>/F.Given any number field kappa, let Q_- denote the infinite set of totally imaginary quadratic extensions over k, and Q_+ the infinite set of quadratic extensions over kappa in which every infinite place of kappa splits. The paper 'On quadratic extensions of number fields and Iwasawa invariants for basic Z_3-extensions' by the investigator and Iwao Kimura mainly proves that, if k is totally real, then a subset of [K * Q_- | lambda_3(K) = lambda_3(K), mu_3(K) = mu_3(k)} has an explicit positive density in Q_-. The paper also proves that a subsetof {L * Q_+ | lambda_3(L) = mu_3(L) = 0} has an explicit positive density in Q_+ if 3 does not divide the class number of k but is divided by only
one prime ideal of kappa.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] 堀江 邦明: "Correction to ‘Two aspects of the relative λ-invariant'" Bulletin of the London Mathematical Society. 29. 367-367 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 堀江 邦明: "On quadratic extensions of number fields and Iwasawa invariants for basic Z_3-extensions" Journal of the Mathematical Society of Japan. 51(to appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 堀江 邦明: "On Iwasawa invariants" Sugaku Expositions, Amer.Math.Soc.(to appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 堀江 邦明: "基礎微分積分学" 東海大学出版会, 238 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Kuniaki Horie: "Correction to 'Two aspects of the relative lambda-invariant'" Bulletin of the London Mathe-matical Society. 29. 367 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Kuniaki Horie and Iwao Kimura: "On quadratic extensions of num-ber fields and Iwasawa invariants for Z_3-extensions" Journal of the Mathematical So-ciety of Japan. 51. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Kuniaki Horie: "On Iwasawa in-variants" Sugaku Expositions, A.M.S.(1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Kuniaki Horie: Basic Differential and Integral Calculus. Tokai University Press, 238 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 堀江邦明: "Correction to 'Tow aspects of the relative λ-invariant'" Bulletin of the London Mathematical Society. 29. 367-367 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] 堀江邦明: "On quadratic extensions of number fields and Iwasawa invariants for basic Z_3-extensions" Journal of the Mathematical Socity of Japan. 51・2. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 堀江邦明: "On Iwasawa invariants" Sugaku Expositions,American Math.Soc.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] 堀江邦明: "基礎微分積分学" 東海大学出版会, 238 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 堀江邦明: "Correction to 'Two aspets of the relative λ-invariant'" Bulletin of the London Mathematical Society. 29. 367-367 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 堀江邦明: "On quadratic extensions of number fields and Iwasawa invariants for basic ZZ_3-extensions" Journal of the Mathematical Society of Japan. 51(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] 堀江邦明: "On Iwasawa infariants" Sugaku Expositions,A.M.S.(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] 堀江邦明: "新版 微分積分学" 東海大学出版会, 196 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi