• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The Index Theorem and Analytic Secondary Invariants in Symplectic Geometry

Research Project

Project/Area Number 09640081
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKeio University (1998-1999)
Hokkaido University (1997)

Principal Investigator

MORIYOSHI Hitoshi  Faculty of Science and Technology, Keio University, Associate Professor, 理工学部, 助教授 (00239708)

Co-Investigator(Kenkyū-buntansha) NATSUME Toshikazu  Faculty of Technology, Nagoya Institute of Technology, Professor, 工学部, 教授 (00125890)
KAMETANI Yukio  Faculty of Science and Technology, Keio University, Assistant Professor, 理工学部, 講師 (70253581)
MAEDA Yoshiaki  Faculty of Science and Technology, Keio University, Professor, 理工学部, 教授 (40101076)
MATSUMOTO Makoto  Faculty of Science, Kyushu University, Associate Professor, 大学院・数理学研究科, 助教授 (70231602)
ONO Kaoru  Faculty of Science, Hokkaido University, Professor, 大学院・理学研究科, 教授 (20204232)
山田 浩嗣  北見工業大学, 工学部, 助教授 (50210472)
神田 雄高  北海道大学, 大学院・理学研究科, 助手 (30280861)
河澄 響矢  北海道大学, 大学院・理学研究科, 助教授 (30214646)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 1999: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1997: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsNONCOMMUTATIVE GEOMETRY / K-TEHORY / CYCLIC COHOMOLORY / THE INDEX THEOREM / SYMPLECTIC GEOMETRY / 非可換微分幾何学 / K-理論 / Maslov類 / spectral flow
Research Abstract

The objective of the project are the followings:
1. Establish the elaborated Index Theorem in the framework of Noncommutative Geometry. Also study the relationship between the Index Theorem and the analytic secondary invariants like the eta invarinats and the spectral flow;
2. Apply the elaborated Index Theorem to Symplectic Geometry and study the Maslov class from the viewpoint of secondary classes.
Here we state one of the results of the project, which is related to the Atiyah-Patodi-Singe Index Theorem in Noncommutative Geometry. Let X be a compact even-dimensional manifold with boundary Y. We equip X with a Riemaniann metric and assume that X is isometric to the product space Y×(-1,0) in a neighborhood of Y. We then denote by X the complete manifold obtained by attaching the half cylinder Y×[0,+∞] to X. To understand the Atiyah-Patodi-Singer Index Theorem in a framework of Noncommutative Geometry, we first introduce a notion of group quasi-action and understand X as the quotient with … More respect to a quasi-action of R. Next we construct a short exact sequence of CィイD1*ィエD1-algebras involved with kernel functions on X. We then define the index of operators on X as elements in a relative K-group. The short exact sequence constructed above is also interesting itself since it yields the Wiener-Hopf extension for CィイD1*ィエD1R even in the simplest case. Given the K-theoretic definition of index, we construct a relative cyclic cocycle that is related to the eta invariant of Y. This description makes clear the role of the integral on the L-polynomial and the eta invariant appeared in the Atiyah-Patodi-Singer Index Theorem, which are a priori depending on the choice of Riemannian metric on X. In short, the eta invariant appears as the transgression form connecting the local invariant with the index of an R-invariant operator on the cylinder Y×R. We also developed the research toi obtain the result that clearify the relation between the eta invarinats and the spectral flow for type II von Neumann algebras. Less

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] H. Omori, Y. Maeda et al: "Poincare-Cartan class and deformation quantization of Kohler-manifold"Communications in Math. Phys. 194. 207-230 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Natsume and R. Nest: "Topological approach to quantum surfaces"Comm. Math. Phys.. 202. 65-87 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Matsumoto: "Simple cellular automata as psedorandom m-sequence generators for built-in self-test"ACM Trons Modeling and Computer Simulation. 8. 31-42 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Moriyoshi: "Noncommutative Geometry and the Index Theorem"Surveys in Geometry. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Moriyoshi: "Geometric construction of central group extensios"Abstracts in JMS. (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka: "Noncommutative 3-sphere; A model of noncommutative contact algebras"Journal of Mathematical Society of Japan. 50. 915-943 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Natsume: "Topological approach to quantum surfaces (with R. Nest)"Comm. Math. Phys.. 202. 65-87 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Matsumoto: "Simple cellular automata as pseudorandom m-sequence generators for built-in self-test"ACM Transactions on Modeling and Computer Simulation. 8. 31-42 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Matsumoto and T. Nishimura: "Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator"ACM Transactions on Modeling and Computer Simulation. 8. 3-30 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Matsumoto: "Galois group GィイD2QィエD2, Singularity EィイD27ィエD2, and Moduli MィイD23ィエD2, London Math. Soc. Lecture Note Series 243 Geometric Galois Actions 2. The Inverse Galois Problem"Moduli Spaces and Mapping class Groups. 179-218 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi