• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Einstein metric on complex manifolds and the lifted Futaki invariant

Research Project

Project/Area Number 09640094
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo University of fisheries

Principal Investigator

TSUBOI Kenji  Tokyo University of Fisheries, Department of Fisheris, Associate Professor, 水産学部, 助教授 (50180047)

Co-Investigator(Kenkyū-buntansha) KAMIMURA Yutaka  Tokyo University of Fisheries, Department of Fisheris, Associate Professor, 水産学部, 助教授 (50134854)
FUTAKI Akito  Tokyo Institute of Technology, Department of mathematics, Professor, 理学部, 教授 (90143247)
Project Period (FY) 1997 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1997: ¥700,000 (Direct Cost: ¥700,000)
KeywordsComplex manifold / Futaki invariant / Einstein metric / Dirac operator / the lifted Futaki invariants / Bando-Calabi-Futaki invariant / Constant scalar curvature Kahler metric / integral invariants / Band-Calabi-Futaki不変量 / 概複素多様体 / 概複素自己同型写像 / 複素自己同型写像 / 不動点公式 / 自己同型群 / 正則ベクトル場 / アインシュタイン=ケーラー計量 / 障害 / リー群準同型写像 / 閉複素多様体 / 第1チャーン形式
Research Abstract

Let M be a closed complex manifold. Then the Futaki invariant is an obstruction to the existence of the Einstein-Kahler metric on M.In K.Tsuboi, The lifted Futaki invariants and the spinc-Dirac operators, Osaka J.Math., vol. 32 (1995), 207-225, we obtain a formula to calculate the lifted Futaki invariant, which is a generalization of the Futaki invariant. In [1] (of the next page), we generalize this formula and obtain a fixed point formula for almost complex manifolds. In [2], we show that the holonomy of a certain line bundle is an obstruction to the existence of the Einstein-Kahler metric. The constant scalar Kahler metric is a generalization of the Einstein-Kahler metric. In [3], [4], the relation of the Bando-Calabi-Futaki invariant, which is an obstruction to the existence of the constant scalar curvature Kahler metric and is an integral invariant, to other geometric invariants are studied. In order to obtain the result about the integral invariant, we need to know about the integral equation, which are studied in [5], [6].

Report

(5 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] K.Tsuboi: "A fixed point formula for compact almost complex manifolds"J.Math.Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Tsuboi: "On the Einstein-Kahler metric and the holonomy of a linebandle"Proc.Edinburgh Math.Soc.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Futaki and Y.Nakagawa: "Characters of antomorphism groups associated with kahler classes and functionals with cocycle condition."Kodai Math.J.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Futaki: "Functionals with cocycle conditions and kahler-Einstein metrics of positive scasar curvature"Promedades on Spheres. (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kamimura: "Corductivity identification in the heat equation by the heat flux"J.Math.Analysis and Applications. 235. 192-216 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution calculus for a class of singular Volterra integral equati"J.Integral Equations and Applications. 11. 461-499 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Tsuboi: "A fixed point formula for compact almost complex manifolds"J.Math. Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Tsuboi: "On the Einstein-Kahler metric and the holonomy of a line bundle"Proc. Edinburgh Math. Soc.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Futaki and Y.Nakagawa: "Characters of automorphism groups associated with Kahler classes and functionals with cocycle conditions"Kodai Math. J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Futaki: "Functionals with cocycle conditions and Kahler-Einstein metrics of positive scalar curvature"PROMENADES ON SPHERES. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kamimura: "Conductivity identification in the heat equation by the heat flux"J.Math. Analysis and Applications. vol. 235. 192-216 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution calculus for a class of singular Volterra integral equations"J.Integral Equations and Applications. vol. 11. 461-499 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Tsuboi: "A fixed point formula for compact almost complex manifolds"J.Math.Kyoto Univ.. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Tsuboi: "On the Einstein-kahler metric and the holonomy of a line bundle"Proc.Edinburgh Math.Soc.. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Futaki and Y.Nakagawa: "Characters of antomorphism groups associated with kahler classes and functionals with cocycle condition"Kodai Math.J.. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Futaki: "Functionals with cocycle conditions and kahler-Einstein metrics of pocsitive sialar curvature"Promenades on Spheres. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kamimura: "Conductivity identification in the heat equation by the heat flux"J.Math.Analysis and Applications. 235. 192-216 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution Calculus for a class of singular Volterra integral equations"J.Integral Equations and Applications. 11. 461-499 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Iwasaki and Y.Kamimura: "Convolution calculus for class of singular Volterra integral equation"J.Integral Eqn. and Appl.. 11. 461-499 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Kamimura: "Conductivity idetification in the heat equation by the heat flux"J.Math.Analy.and Appl.. 235. 192-216 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 二木昭人訳(J.Morgan著): "サイバーグ・ネッテン理論とトポロジー"培風館. 143 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kenji Tsuboi: "On the integral invariants of Futaki-Morita and the determinant of elliptic operators" Far East J.Math.Sci.5. 305-319 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yutaka Kamimura: "Inverse problems of determing nonlinear terms in ordinary differential equations" Inverse Problems, Tomography,and Image Processing. 87-94 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yutaka Kamimura: "Aninverse problem of determining a nonlinear term in an ordinary differential equation" Differential and Integral Equations. 11. 341-359 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yutaka Kamimura: "Uniqueness of the nonlinear term of a boundary value problem from the first bifurcating branch" Proc.Japan Acad.Ser.A. 74. 53-56 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 二木昭人: "サイバーク・ウィッテン理論とトポロジー" 培風館, 147 (1988)

    • Related Report
      1998 Annual Research Report
  • [Publications] Kenij Tsuboi: "On the integural invariants of Futaki-Morita and the determinant of elliptic operutors" Far EastJ.Math.Sci.5-2. 305-319 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi