• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

RESEARCH ON HIGHER SIGNATURES

Research Project

Project/Area Number 09640104
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

ISHII Akira  Kyoto University, Faculty of Engineering, Lecturer, 工学研究科, 講師 (10252420)

Co-Investigator(Kenkyū-buntansha) MATSUZAWA Jun-ichi  Kyoto University, Faculty of Engineering, Lecturer, 工学研究科, 講師 (00212217)
FUKAYA Kenji  Kyoto University, Faculty of Science, Professor, 理学研究科, 教授 (30165261)
KONO Akira  Kyoto University, Faculty of Science, Professor, 理学研究科, 教授 (00093237)
HARADA Masana  Kyoto University, Faculty of Science, Instructor, 理学研究科, 助手 (80181022)
Project Period (FY) 1997 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 2000: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1997: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsNovikov Conjecture / discrete group / operator algebra / deformation / singularity / McKay correspondence
Research Abstract

In this project, we developed so-called Novikov Conjecture, a conjecture in differential topology. First, we treated combing groups, as a class of discrete groups. This class, being a big class, includes cases where a segment may be far from being a geodesic. Therefore, we introduced the geometric notion of properness and its class turned out to be very easy to treat. Secondly, as a Fredholm representation corresponding to the E-theory introduced by Connes and Higson, we introduced the notion of asymptotic Lipschitz maps of spaces. Under these preparations, we proved the Novikov Conjecture for torsion-free, proper combing groups.
For a map of discrete metric spaces, we can consider conditions on the metric, such as the Lipschitz condition Putting such conditions on the metric, we defined a map being a fiber structure. By studying fiber structures in the cases of discrete groups, we obtained the following : Let Γ be a fundamental group of almost non positively curved manifold. Then any class in H^* (Γ ; R) is a proper Lipschitz class. In particular, Γ satisfies Novikov conjecture.
We studied versal deformations of reflexive modules on rational double points. We constructed a natural stratification of the deformation space and a desingularization of the closure of a stratum as a moduli space, representing a functor defined over the deformation space as a base. In particular, the closure relation of the classes of reflexive modules coincides with the usual order of dominant weights of the corresponding root system. Moreover, we described the singularities arising from adjacent strata.
Finally, we generalized Ito-Nakamura type results on McKay correspondence to the cases of general quotient surface singularities, as conjectured by Riemenschneider.

Report

(5 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (34 results)

All Other

All Publications (34 results)

  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Akira Kono: "4-manifolds X over BSU (2) and the corresponding homotopy types Map (X, SU (2))"J.Pure Appl.Algebra 151 (2000). 3. 227-237 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Anti-Self-Dual equation on 4-manifolds with degenerate metric"Geometric Analysis and Functional Analysis. 8. 466-528 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Arnold conjecture and Gromov-Witten invariant"Topology. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Junichi Matsuzawa: "Blow-ups of P^2 and Root System of type D"J.Math.Kyoto Univ.. 39. 725-761 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Morse theory and topological field theory"Suugaku Exposition. 10-1. 19-39 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Akira Kono and Shuichi Tsukuda: "4-manifolds X over BSU(2) and the corresponding homotopy types Map(X, BSU(2))"J.Pure Appl.Algebra 151. no.3. 227-237 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Anti-Self-Dual equation on 4-manifolds with degenerate metric"Geometric Analysis and Functional Analysis. 8. 466-528 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya and Kaoru Ono: "Arnold conjecture and Gromov-Witten invariant"Topology.. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Junichi Matsuzawa and Akiko Omura: "Blow-ups of P^2 and Root System of type D"J.Math.Kyoto Univ.. 39. 725-761 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Morse theory and topological field theory"Suugaku Exposition. 10-1. 19-39 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. 317. 239-262 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Ishii: "On McKay correspondence for a finite small subgroups of GL(2,C)"Kyoto-Math preprint series. 00-18. 1-13 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Kono,S.Tsukuda: "4-manifolds X over BSU(2) and the corresponding homotopy type Map(X,BSU(2))"J.Pure and Appl.Algebra. 151 3. 227-237 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Hamanaka,A.Kono: "Homotopy-commutativity in spinor groups"J.Math.Kyoto Univ.. 40. 389-405 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Fukaya: "Floer homology for families -report of a project in progress-"Kyoto-Math preprint series. 01-3. 1-37 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kato: "Asymptotic Lipschitz maps, combable groups and higher signatures"Geometric and Functional Analysis. 10. 51-100 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Matsuzawa,A.Omura: "Blow-ups of P^2 and root systems of type D"Journal of Mathematics of Kyoto University. 39 4. 725-761 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] A.Kono: "4-manifolds X over BSU(2) and the corresponding homotopy type Map(X,BSU(2))"J.Pure and Appl.Algebra. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] A.Kono: "Adjoint action of finite loop space II"Proc.Roy.Soc.Edinburgh Sect.A. 129(掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Fukaya: "Arnold conjecture and Gromov-Witten invariant"Topology. 38. 933-1048 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kato: "Asymptotic Lipschitz maps,combable groups and higher signatures"Geometric and Functional Analysis. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Fukaya: "Anti-self-dual equation on 4-manifolds with degenerate metric" Geometric and Functional Analysis. 8. 466-528 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Fukaya: "Amold conjecture and Gromov-Witten Invariants" Topology. 1-150

    • Related Report
      1998 Annual Research Report
  • [Publications] 深谷賢治: "シンプレクテイック幾何学" 岩波書店, 300 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 深谷賢治: "これらかの幾何学" 日本評論社, (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Tsuyoshi Kato: "The asymptotic methcd in the Novikov conjecture" Sci. Bull. Josai Univ. 2. 51-62 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Kenji Fukaya: "Arnold conjecture and Gromov-Witlen invariant for general symplectic manifolds" Arnold Memorial Volume. (発表予定).

    • Related Report
      1997 Annual Research Report
  • [Publications] H. Hamanaka: "Adjoint uctions on the modulo 5 homology graps of E8andΩE8" J. Math. Kyoto Univ.37. 169-176 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Kenji Fukaya: "Floer Homology, A^∞-Categories and Topdogical Field Theory" Lecture notes in pure and upplied muthmtics. 184. 9-32 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Kenji Fukaya: "Morse theory and topological field theory" Sungaku Exposition. 10-1. 19-39 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Kenji Fukaya: "Zero-loop open string on cotangent bundle and Morse homotopy" Asian Journal of Mathematics. 1. 96-180 (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi