• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of control theory of the fixed point sets on spheres

Research Project

Project/Area Number 09640110
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

MORIMOTO Masaharu  Faculty of Env. Sci. Tech. Okayama University, Associate Professor, 環境理工学部, 助教授 (30166441)

Co-Investigator(Kenkyū-buntansha) NAKAJIMA Atsushi  Faculty of Env. Sci. Tech. Okayama University, Professor, 環境理工学部, 教授 (30032824)
NODA Ryuzaburo  Faculty of Env. Sci. Tech. Okayama University, Professor, 環境理工学部, 教授 (70029726)
SHIMOKAWA Kazuhisa  Faculty of Science, Okayama University, Professor, 理学部, 教授 (70109081)
TANAKA Katsumi  Faculty of Science, Okayama University, Associate Professor, 理学部, 助教授 (60207082)
IKEHATA Shuichi  Faculty of Env. Sci. Tech. Okayama University, Professor, 環境理工学部, 教授 (20116429)
佐々木 徹  岡山大学, 環境理工学部, 講師 (20260664)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 1999: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1998: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1997: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordsfixed point / G-action / sphere
Research Abstract

The purpose of this research was to study the following three : (1) (P(G), L(G))-controlled equivariant surgery, cobordism and representation theories and a theory to control isotropy subgroups appearing on manifolds ; (2) Dress'induction of the equivariant cobordism theory of equivariant framed normal maps ; (3) the injection maps IndィイD3G(/)HィエD3 among various finite groups H ⊂ G ; and determine the G-fixed point manifolds of smooth G-actions on spheres for Oliver groups G. We obtained the following results in the research. (1) We proved a deleting-inserting theorem of fixed point components on disks and spheres for Oliver Groups. In a joint work K. Pawalowski, we proved an extension theory of (P(G), L(G))-vector bundles on finite G-CW complexes. Using the equivariant thickening theory with this extension theory, we developed a theory to control isotropy subgroups on disks. (2) We proved that Bak-Morimoto's surgery obstruction group is a Mackey functor on which a Green functor acts, and algebraic Dress'induction works for the obstruction group. In addition, we proved that the cobordism invariance of the surgery obstruction and show that geometric Dress'induction works. (3) In joint works with T. Sumi and M. Yanagihara, we studied the induction maps IndィイD3G(/)HィエD3 for various finite groups H ⊂ G, we constructed (P(G), L(G))-matched pairs and (P(G), L(G))-gap modules for many G. Putting all this together, we determined the G-fixed point manifolds of smooth G-actions on spheres for various Oliver groups G.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] M. Morimoto, T. Sumi and M. Yanagihara: "Finite groups possessing gap modules"Proc. Topology and Geometry at Aarhus 1998. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto and K. Pawatowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles"Osaka Journal of Mathematics. 36. 767-781 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto and K. Pawatowski: "The equivariant bundle subtraction theorem and its applications"Fundamenta Mathematicae. 161. 279-303 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto: "Equivariant surgery theory. Deleting-inserting theorems of fixed point manifolds on spheres and disks"K-Theory. 15. 13-32 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Laitinen and M. Morimoto: "Finite groups with smooth one fixed point actions on spheres"Forum Mathematicum. 10. 479-520 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto: "A geometric quadratic form of 3-dimensional normal maps"Topology and its Applications. 83. 77-102 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto, T. Sumi and M. Yanagihara: "Finite groups possessing gap modules"in Proc. of Conf. Topology and Geometry at Aarhus. (to appear). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto and K. Pawalowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles"Osaka J. Math.. 36. 767-781 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto and K. Pawalowski: "The equivariant bundle subtraction theorem and its applications"Fund. Math.. 161. 279-303 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Laitinen and M. Morimoto: "Finite groups with smooth one fixed point actions on spheres"Forum Math. 10. 479-520 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto: "Equivariant surgery theory : Deleting-inserting theorems of fixed point manifolds on spheres and disks"K-Theory. 15. 13-32 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Morimoto: "A geometric quadratic form of 3-dimensional normal maps"Topology and its Applications. 83. 77-102 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Morimoto, T.Sumi and M.Yanagihara: "Finite groups possessing gap modules"Proc. Topology and Geometry Aarhus 1998 (Curr. Math. AMS). (to appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Morimoto and K.Pawatowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles"Osaka Journal Math.. (to appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Morimoto and K.Pawatowski: "The equivariant bundle subtraction theorem and its applications"Fund. Math.. 161. 279-303 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Morimoto-K.Pawatowski: "Equivariant wedge sum construction of finite contractible G-CW complexes with G-vector bundles" Osaka Journal of Mathematics. (印刷中).

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Morimoto: "Deleting-inserting theorems of fixed point mauifolds on spheres and discs" K-Theory. 15. 13-32 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] E.Laitineu-M.Morimoto: "Finite groups with smooth one fixed point actious on spheres" Forum Mathematicum. 10. 479-520 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Morimoto: "A geometric quadratic form of 3-dimensional normal maps" Topology and its Applications. 83. 77-102 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] E.Laitinen-M.Morimoto: "Finite groups with smooth one fixed point actions on spheres" Forum Math.

    • Related Report
      1997 Annual Research Report
  • [Publications] M.Morimoto: "A geometric quadratic form of 3-dimeusional normal maps" Topology and its Applications.

    • Related Report
      1997 Annual Research Report
  • [Publications] M.Morimoto: "Equivariant surgery theory : Deleting-imserting theorems of fixed point mauifolds on spheres and disks" K-Theory.

    • Related Report
      1997 Annual Research Report
  • [Publications] K.Irie, K.Shimakawa 等: "A quaternionic analogue of Atiyah's Real K-theory" Proc.1996 Korea-Japan Conference on Transformation Group Theory,Aig.and its Appl.Research Center. 51-61 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi