• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation formulas of Weierstrass type in submanifold theory

Research Project

Project/Area Number 09640120
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKumamoto University

Principal Investigator

INOUE Hisao  Kumamoto Univ., Lect., 理学部, 講師 (40145272)

Co-Investigator(Kenkyū-buntansha) MAEBASHI Toshiyuki  Kumamoto Univ., Prof., 理学部, 教授 (90032804)
OHWAKI Shin-ichi  Kumamoto Univ., Prof., 理学部, 教授 (50040506)
KUROSE Takashi  Fukuoka Univ., Assoc.Prof., 理学部, 助教授 (30215107)
HARAOKA Yoshishige  Kumamoto Univ., Assoc.Prof., 理学部, 助教授 (30208665)
YAMADA Kotaro  Kumamoto Univ., Assoc.Prof., 理学部, 助教授 (10221657)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 1998: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1997: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordsminimal surfaces / Weierstrass representation / monodoromoy / ODE / integrable system / モノドロミ-問題
Research Abstract

We investigated a global properties of Weierstrass representation. First of all, we studied a fundamental problem related to global problems. In particular, as the monodromy problem for minimal surfaces in Euclidean geometry is considered as a period problem of certain integral of holomorphic forms, that of CMC-1 surfaces in hyperbolic space can be considerd as a monodromy problem of a ordinary differential equation on Riemann surfaces. In this context, the monodromy problem is the condition for SL(2, C)-monodromy group to be reduced to the unitary group. To find a criterion of such a condition is difficult. However, when a problem satisfies some symmetric properties, it can be solved explicitly. Using this fact, we have constructed a large amount of examples of CMC-1 surfaces. Related to this problem, we investigated metrics of constant positive curvature with conical singularities, and obtained a classification result.
Related to classification of CMC-1 surfaces, we defined a homology invariant on CMC-1 surface, which is called flux, and proved some non-existence theorem using this invariant. Moreover, using Weierstrass representation for maximal surfaces in Minkowski 3-space, we have classified of surfaces with cone-like singularities with some finiteness.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Umehara and K.Yamada: "Metrics of constant curvature 1 with three conical singularities on 2-sphere" To appear in Indiana Journal of Mathematics. (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] W.Rossman et.al.: "A new flux for mean curvature 1 surfaces in hyperbolic 3-space,and applications" To appear in Proceedings of American Math.Soc.(1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Haraoka: "Quadratic relations for confluent hypergeometric functions on Z_<2,n+1>" To appear in Funkcialaj Ekvacioj. (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Umehara and K.Yamada: "Metrics of constant curvature 1 with three conical singularities on 2-sphere, 1999." Inidiana Journal of Mathematics. (To appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] W.Rossman, M.Umehara and K.Yamada: "A new flux for mean curvature 1 surfaces in hyperbolic 3-space, and applications" Proceedings of American Math.Soc.(To appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Haraoka: "Quadratic relations for confluent hypergeometric functions on Z_<2, n+1>" Funkcialaj Ekvacioj. (to appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Umehara and K.Yamada: "Metrics of constant curvature 1 with three conical singularities on 2-sphere" Indiana Journal of Mathematics. (To appear). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] W.Rossman et.al.: "A new flux for mean curvature 1 surfaces in hyperbolic 3-space,and applicaations" Proceedings of American Math.Soc.(To appear). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Haraoka: "Quadratic relations for confluent bypergeometric functions on Z_<2,n+1>" Funkcialaj Ekvacioj. (To appear). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Haraoka: "Confluence of cycles for hypergenometric functions on Z_<2,n+1>" Transactions of the American Mathematical Society. 349. 675-712 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Haraoka: "Monodromy of an Okubo system with non-semisimple exponents" Funkcialaj Ekvacioj. 40. 435-457 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 大脇信一: "至るところ不連続な関数達の非ルベ-グ積分公式を使ったゆらぎのある微分方程式の解法" 情報処理学会第6回全国大会講演論文集. (印刷中). (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi