• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Set Theoretic Approaches for Normality of Product Spaces

Research Project

Project/Area Number 09640122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOita University

Principal Investigator

KEMOTO Nobuyuki  Oita Univ. Education and Welfare Science, Professor, 教育福祉科学部, 教授 (70161825)

Co-Investigator(Kenkyū-buntansha) MORI Naganori  Oita Univ. Education and Welfare Science, Professor, 教育福祉科学部, 教授 (40040737)
BABA Kiyoshi  Oita Univ. Education and Welfare Science, Professor, 教育福祉科学部, 教授 (80136770)
KITA Hiroo  Oita Univ. Education and Welfare Science, Professor, 教育福祉科学部, 教授 (20224941)
OGATA Takehide  Oita Univ. Education and Welfare Science, Associate Professor, 教育福祉科学部, 助教授 (90037268)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1997: ¥700,000 (Direct Cost: ¥700,000)
KeywordsNormal / Product / Countably paracompact / Orthocompact / Paracompact / V=L / PMEA / weakly sequentially complete / paracompact / subparacompact / metacompact / countably paracompact / normal / 順序数 / 正規 / 可算メタコンパクト / オルソコンパクト / MA
Research Abstract

In this research project, we proved on countable metacompactness:
(1) An subspaces of αィイD12ィエD1 are countably metacompact for suitably large α.
(2) An subspaces of ωィイD3η(/)1ィエD3 are countably metacompact for every ηεω.
(3) There is a subspace of ωィイD3ω(/)1ィエD3 which is not countably metacompact.
After then we obtained an affirmative answer of a problem on normality raised by Kemoto, Ohta and Tamono, that is, normality and collectionwise normality an equivalent for all subspaces ofαィイD12ィエD1. We proved: For every subspace X of ωィイD32(/)1ィエD3,
(1) X is normal iff X is apandable iff X is coutably paracompact and strongly collectionwise Hausdorff.
(2) If V=L or the Product Measure Extension Axiom are assumed, then X is normal iff X is countably paracompact.
(3) X is collectionwise Hausdorff.
We have also investigated on orthocompactness: In the realm of subspaces of products of two ordinals:
(1) Orthocompactness and weak suborthocompactness are equivalent.
(2) There is an orthocompact subspace of … More ωィイD32(/)1ィエD3 which is not normal.
(3) Normal subspaces of ωィイD32(/)1ィエD3 are orthocompact.
(4) There is a normal subspace of (ωィイD21ィエD2+1)ィイD12ィエD1 which is not orthocmpact.
(5) If X is a subspace of ωィイD21ィエD2×ωィイD22ィエD2 such that X∩(α+1)×ωィイD22ィエD2 and X∩ωィイD21ィエD2×(β+1) are orthocompact for each α<ωィイD21ィエD2 and β<ωィイD22ィエD2, then X is orthocompact.
Around paracompactness, we proved the following results: Let consider subspaces of products of two ordinal:
(1) For such subspaces, weak submetaLindelofness and metacompactness are equivalent.
(2) For such subspaces, subparacompactness implies metacompactness.
(3) Metacompact subspaces ofωィイD32(/)1ィエD3 are paracompact.
(4) Metacompact subspaces of ωィイD32(/)2ィエD3 are subparacompact.
(5) There is a metacompact subspace of (ωィイD21ィエD2+1)ィイD12ィエD1 which is not paracompact.
(6) There is a metacompact subspace of (ωィイD22ィエD2+1)ィイD12ィエD1 which is not subparacompact.
On sequential completeness, we proved: let κ be a cardinal number with the usual order topology:
(1) All subspaces of κィイD12ィエD1 are weakly sequentially compete.
(2) All subspaces of ωィイD32(/)1ィエD3 are sequentially complete.
(3) There is a subspace of (ωィイD21ィエD2+2)ィイD12ィエD1 which is not sequentailly complete.
(4) A×B is sequentially complete whenever A and B are subspaces of κ. Less

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] N. Kemoto, K. P. Smith, P.J. Szeptycki: "Countable paracompactnes versus normality"Top. Appl.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N. Kemoto, K. tamano, Y. Yajima: "Generalized Paracompactness of Subspaces in Products of Two ordinate"Top. Appl.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R. Frie, N. Kemoto: "Sequential completeness of products of ordinals"Czec. Math.. 49. 119-125 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N. Kemoto: "Orthocompact subspace in product of two ordinals"Top. Proc.. 22. 247-264 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N. Kemoto, Y. Yajima: "Submetacompactness in B-spaces"Top. Proc.. 22. 265-280 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N. Kemoto, K.D. Smith: "Hereditary countable metacompactness in finite and infinite product space of ordinals"Top. Appl.. 77. 57-63 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R.Fric and N.Kemoto: "Sequential completeness of products of ordinals"Czec. Math. 49. 119-125 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto and K.D.Smith: "Hereditarily countable metacompactness in finite and infinite product spaces of ordinals"Top. Appl. 77. 57-63 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto, K.D.Smith and P.J.Szeptycki: "Countable paracompactness versus normality in ωィイD32(/)1ィエD3"Top.Appl.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto, K.Tamano and Y.Yajima: "Generalized paracompactness of subspeces in products of two ordinals"Top.Appl.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto and Y.Yajima: "Submetacompactness in β-spaces"Top. Proc.. 22. 265-280 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto: "Orthocompact subspaces in products of two ordinals"Top. Proc.. 22. 247-264 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] N.Kemoto: "Sequential completeness of subspaces of products of two ordinals"Czechoslovak Math.J.. 49. 119-125 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] N.Kemoto: "Countable paracompactness vepsus normality in ω^2_1" Top.Appl.(発表予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Kemoto: "Generalized paracompactness of subspaces in products of two ordinals" Top.Appl.(発表予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Kita: "On Interpolation of the Fourier Maximal Operator in Orlicz Spaces" Acta Math.Hungar.81・3. 175-193 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Kita: "Integrability Properties of Maximal Operator on Partial Sums of Fourier Series in Orlicz Spaces" Math.Nachr.193. 57-74 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Kemoto: "Orthocompact subspaces in products of two ordinals" Topology Proceedings. (発表予定).

    • Related Report
      1997 Annual Research Report
  • [Publications] N.Kemoto: "Submetacompactness in β-spaces'" Topslogy Proceedings. (発表予定).

    • Related Report
      1997 Annual Research Report
  • [Publications] N.Kemoto: "Heredirarily countuble motacompactness in finite and infinite product spaces of ordinals" Top. Appl.77. 57-63 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Kita: "On maximal operator of partial sums of Fourier series in Orlicz spaces" Acta Math. Hungar. 77. 1-13 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Kita: "On Hardy-Littlewood maximal functions in Orlicz spaces" Math. Nachr.183. 135-155 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi