• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

RIGIDITY OF GROUP ACTIONS

Research Project

Project/Area Number 09640128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University (1998)
Keio University (1997)

Principal Investigator

KANAI Masahiko  Nagoya Univ., Grad.School of Math., Professor, 大学院・多元数理科学研究科, 教授 (70183035)

Co-Investigator(Kenkyū-buntansha) MAEDA Yoshiaki  Keio Univ.Dept.of Math., Professor, 理工学部, 教授 (40101076)
TONEGAWA Yoshihiro  Keio Univ.Dept.of Math., Instructor, 理工学部, 助手 (80296748)
TAMURA Yozo  Keio Univ.Dept.of Math., Associate Professor, 理工学部, 助教授 (50171905)
SUZUKI Yuki  Keio Univ.Dept.of Math., Instructor, 理工学部, 助手 (30286645)
ITO Yuji  Keio Univ.Dept.of Math., Professor, 理工学部, 教授 (90112987)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1997: ¥2,100,000 (Direct Cost: ¥2,100,000)
Keywordsrigidity of group actions / global analysis on foliated manifolds / 微分同相群の等質空間 / スピン系の流体力学極限 / 無限次元極小曲面 / 化学反応に関する自由境界値問題 / 非可控接触代数
Research Abstract

A smooth action of a discrete group GAMMA on a differentiable manifold M is, by definition, a homomorphism of GAMMA into Diff M, the diffeomorphism group of M.One of the main theme in the theory of group actions is to depict the whole space A (GAMMA, Diff M) of smooth actions of GAMMA on M.By rigidity (in a wide sense) is meant a claim which says that the space A(GAMMA, Diff M) is "small".
Invariant Geometric Structures. One of the approaches to the rigidity problem is frying to find a geometric structure that is invariant under a given group action. We found a new example for which this approach works.
Global Analysis on Foliated Manifolds. Rigidity for group actions often amounts to some global-analytic problem on a foliated manifold. We were able to describe the spectrum of the tangential laplacian on a certain foliated manifold.
Infinite-Dimensional Homogeneous Spaces of Diffeomorphism Groups. We studied geometry and topology of such spaces especially bearing an application to rigidity problem in mind.
Also there have been done researches on infinite-dimensional minimal submanifolds in infinite-dimensional spaces (by Maeda) , on the blow-up phenomenon of the Yang-Mills gradient flow (by Maeda) , on hydrodynamic limit of a spin system (by Suzuki) , and on a regularity theorem for a certain free boundary problem (by Tonegawa).

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] M.Kanai: "Rigidity of group actions" Seminaire de Theorie Spectrale et Geometrie,Univ.Grenoble I. 15. (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Suzuki: "Hydrodynamic limit for an infinite spin system on Z" Tokyo Journal of Mathematics. 20. 139-172 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Tonegawa: "On the regularity of a chemical reaction interface" Comm.Partial Differential Equqtions. 23. 1181-1207 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] P.Padilla and Y.Tonegawa: "On the convergence of stable phase transitions" Comm.Pure Appl.Math.51. 551-579 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Maeda,S.Rosenberg and P.Tondeur: "Minimal orbits of metrics" Journal of Geometry and Physics. 23. 319-349 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.Kozono,Y.Maeda and H.Naito: "A Yang-Mills-Higgs gradient flow on R^3 blowing up at infinity" Proceedings of the Japan Academy,Ser.A,. 74. 71-73 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Kanai: "Rigidity of group actions" Seminaire de Theorie Spectrale et Geometrie, Univ.Grenoble I. 15. (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Suzuki: "Hydrodynamic limit for an infinite spin system on Z" Tokyo J.Math.20. 139-172 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Tonegawa: "On the regularity of a chemical reaction interface" Comm.Partial Diff.Eq.23. 1181-1207 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] P.Padilla and Y.Tonegawa: "On the convergence of stable phase transitions" Comm.Pure Appl.Math.51. 551-579 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Maeda, S.Rosenberg and P.Tondeur: "Minimal orbits of metrics" J.Geom.Phys.23. 319-349 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.Kozono, Y.Maeda and H.Naito: "A Yang-Mills-Higgs gradient flow on R^3 blowing up at infinity" Proc.Japan Acad., Ser.A.74. 71-73 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Kanai: "Rigidity of group actions" Seminaire de Theoris Spectrale et Geometrie, Univ.Grenoble I. 15. (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Maeda et al: "Minimal orbits of metrics" J.Geom.Phys.23. 319-349 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Omori,Y.Maeda et al: "Noncommututive3-sphere as an example of noncommutatiul contact algebvos" Bauach Center Publ.40. 329-334 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] P.Padilla & Y.Tonegawa: "On the convevgence of Stable Phase transitions" Comm.Pure Apl.Math.51. 551-579 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Tonegawa: "On the regulavity of a chemical veaction intevface" Comm.Pavtial Diff.Eg.(to appear).

    • Related Report
      1997 Annual Research Report
  • [Publications] Y.Suzuki: "Hydrodynamic limit for an infinite spin system cu Z" Tokyo J.Math.20. 139-172 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi