• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on Hardy spaces by real analytic methods

Research Project

Project/Area Number 09640146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

KANEKO Makoto  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (10007172)

Co-Investigator(Kenkyū-buntansha) OHNO Yoshiki  Graduate School of Information Sciences, Tohoku University, Associate Professor, 大学院・情報科学研究科, 助教授 (80005777)
SUZUKI Yoshiya  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (30005772)
OKADA Masami  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (00152314)
ARISAWA Mariko  Graduate School of Information Sciences, Tohoku University, Associate Professor, 大学院・情報科学研究科, 助教授 (50312632)
会田 茂樹  東北大学, 大学院情報科学研究科, 助教授 (90222455)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1999: ¥300,000 (Direct Cost: ¥300,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1997: ¥600,000 (Direct Cost: ¥600,000)
KeywordsHardy space / Fourier multiplier operator / Transference problem / Maximal operator / 最大関数 / ループ空間 / 対数ソボレフ不等式 / ハ-ディー空間
Research Abstract

The Hardy spaces constructed in an n-dimensional Euclidean space have been studied by many authors since a long time ago as well as those built on n-dimensional torus. In this research we have pointed out that the both of two have very similar constructions through the investigation of the transference problem.
When a bounded function defined on an n-dimensional Euclidean space is given, we have an operator called Fourier multiplier operator which is defined by multiplying the Fourier transform of an object function or a distribution by the bounded function. On the other hand, if we consider the restriction of the given bounded function to the n-dimensional lattice, then we have a Fourier multiplier operator in the frame of Fourier series arguments.
A countable number of bounded functions make a sequence of Fourier multiplier operators in both frames of Fourier transform and Fourier series. Each of them constructs the associated maximal operator. We have succeeded to prove that the continuity of the maximal operator in the frame of Fourier transform argument from a Hardy space to a weak Lebesgue space implies the continuity of the counterpart maximal operator in the setting of Fourier series argument.
Furthermore, we have studied the maximal operator obtained by the family of convoluted functions by an integrable function of a given sequence of bounded functions. We have gained an simple proof of showing that the continuity of the above maximal operator is reduced from the continuity of the maximal operator defined by the sequence of initially given and nonconvoluted bounded functions.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] M.Kaneko: "Notes on trausference of continuity from maximal Fourier multiplier operators on IR^n to those on II^<n >"Interdisciplinary Information Sciences. 4. 97-107 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Ichijo: "Some remarks on Besov spaces and the wavelet de-noising method"Japan J. Ind. Aprl. Math.. 16. 287-305 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Kawaguchi: "Saturation problem in approsimation of functions by some operators associated with the generaliged Jackson's operators"Interdisciplinary Information Siences. 5. 125-148 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Ohno: "Some invariant subspaces in L^2_H"Interdisciplinary Information Siences. 2. 131-137 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Arisawa: "APDE approach to stale-constraint problems in Hilbert spaces"SIAM J. Applied Math. Optimization. 発表予定.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Arisawa: "On eregodic stochastic control"Comm. Partial Diff. Equations. 23. 2187-2217 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Kaneko and E. Sato: "Notes on transference of continuity from maximal Fourier multiplier operators on RィイD1nィエD1 to those on TィイD1nィエD1"Interdisciplinary Information Sciences. 4-1. 97-107 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Ichijo, Y. Ishikawa and M. Okada: "Some remarks on Besov spaces and the wavelet de-noising method"Japan J. Ind. Appl. Math.. 16-2. 287-305 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Kawaguchi and Y. Suzuki: "Saturation problem in approximation of functions by some operators associated with the generalized Jackson's operators"Interdisciplinary Information Sciences. 5-2. 125-148 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Ohno: "Some invariant subspaces in LィイD32(/)HィエD3"Interdisciplinary Information Sciences. 2-2. 131-137 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Arisawa, H. Ishii, and P.-L. Lions: "A PDE approach to state-constraint problems in Hilbert spaces"SIAM J. Applied Math. and Optimizations. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Arisawa and P.-L. Lions: "On ergodic stochastic control"Comm. Partial Differential Equations. 23-11・12. 2187-2217 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Kaneko and E.Sato: "Notes on transference of continuity from maximal Fourier multiplier operators on R^n to those on T^n"Interdisciplinary Inf. Sciences. 4・1. 97-107 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Ichijo,Y.Ishikawa & M.Okada: "Some remarks on Besov sps. and the wavelet de-noising method"Japan J. Ind. Appl. Math.. 16・2. 287-305 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Kawaguchi and Y.Suzuki: "Saturation problem in approx. of fts. by some operators assoc. with the generalized Jackson's ops."Interdisciplinary Information Sciences. 5・2. 125-148 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Ohno: "Some invariant subspaces in L^2H"Interdisciplinary Information Sciences. 2・2. 131-137 (1996)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Arisawa,H.Ishii and P.L.Lions: "A PDE approach to state-constraint problems in Hilbert sps."SIAM J. Applied Math. and Optimizations. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Arisawa and P.L.Lions: "On ergodic stochastic control"Comm. Partial Differential Equations. 23・11-12. 2187-2217 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Kaneko: "Notes on transference of continuity from maximal Fourier multiplier operators on IR^n to those on II^n." Interdisciplinary Infomation Sciences. Vol.4・No.1. 97-107 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Aida: "Differential calculus on path and loop spaces, II. lrredsicibility of Dirichlet forms on loop spaces" Bull.Sciences Math.122・8. 635-666 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 会田 茂樹: "ループ空間上の確率解析" 数学. 50・3. 265-281 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Aida: "Uniform positivity improving property, Sobolev in eualities and spectral gaps" J.Functional Analysis. 158・1. 152-185 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] I.Morimoto: "Some results on Bellman equation of ergodic control." SIAM J.Control. Optim. 印刷中. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Kaneko: "Notes on transference of continuity from maximal Fourier multiplier operators on IR^n to those on II^n." Interdisciplinary Information Sciences. vol4・No.1(未定). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Imada: "On an extremal property of generaligecl Korovkin,s operator." Memoirs Tohoku Inst.Tech.,Ser. I Sci.and Eng.No.17. 1-8 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] K.Ichijo: "On the wavelet de-noising method in statist inv.problem." Proc.warkshop on turbulent diffusion and related problems in Stochastic numerics,Inst.of Stat.Math.67-82 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi