• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the properties of adjacency operators of graphs and the maps between von Neumann algegras

Research Project

Project/Area Number 09640147
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionMiyagi University of Education

Principal Investigator

TAKEMOTO Hideo  MIYAGI UNIV.OF EDUCATION,EDUCATION,PROFESSOR, 教育学部, 教授 (00004408)

Co-Investigator(Kenkyū-buntansha) MORIOKA Masaomi  MIYAGI UNIV.OF EDUCATION,EDUCATION,ASSIT.PROFESSOR, 教育学部, 助教授 (10174400)
YAMADA Haruki  MIYAGI UNIV.OF EDUCATION,EDUCATION,PROFESSOR, 教育学部, 教授 (00092578)
YOROZU Sinsuke  MIYAGI UNIV.OF EDUCATION,EDUCATION,PROFESSOR, 教育学部, 教授 (40019849)
SHIRAI Susumu  MIYAGI UNIV.OF EDUCATION,EDUCATION,PROFESSOR, 教育学部, 教授 (30115175)
AZUMA Kazuoki  MIYAGI UNIV.OF EDUCATION,EDUCATION,PROFESSOR, 教育学部, 教授 (70005776)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1997: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsVon Neumann algebra / Generation / Directed graph / Adjacency operator / De Morgan / Spectral radius / Numerical radius / Norm / フォン・ノイマン環 / 数域 / スペクトル半径 / クリーネ代数
Research Abstract

We had some new interesting results in these two years. For the generation of von Neumann algegras which was one of the purposes on the occasion of the application of this research, we had some results. One of these is the following : We could show that the von Neumann algebra generated by the adjacency operator respect to a regular directed graph being an partially isometric operator is always the von Neumann algebra of type I.Second of the results is the following : We solved the conjecture by Saito where can we a power partial isometric operator generated the von Neumann algebra with any given type, For the answer for this Saito's problem. we could show that the von Neumann algebra generated by any power partial isometric operator is a von Neumann algebra of type I.Furthermore, me could give a characterization of the power partial isometric operators which is a different from the characterization given before. And an idea of the proof for this characterization had an important role for the proof of Saito's problem.
We could give a characterization of de Morgan algebras and Kleene algebrlas by introducing a new notation. This new notation was considered when we examine the properties of the mapping between the von Neumann algebras and me expect that this notation will be a useful role for making the research of the property between the von Neumann algebras. Furthermore, we could introduce a new notation-of the isoperimetric number of the directed infinite graphs and we showed the relation of spetral radius, numerical radius and norm of adjacency operator respect to the directed infinite graph. Furthermore, we investigated the property of folliation connected with the research of structure of non-commutative geometry in operator algebras.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] Masaki Takamura: "The numerical radius of an infinite directed regular graph" Mathematica Japonica. 45. 337-343 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hideo Takemoto: "On a Saito's problem for the generations of von Neumann algebras by power partial isometries" Nihonkai Mathematical Journal. 9. 97-104 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hideo Takemoto: "A characterization of the power partially isometric operators" Bulletin of Miyagi University of Education. 33印刷中. (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 中島伸之: "不動核によるド・モルガン代数とクリーネ代数の特徴づけ" 日本ファジー学会誌. 9. 988-994 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 森岡正臣: "グラフが全閉路的であるための新しい十分条件について" 宮城教育大学紀要. 32. 105-110 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 森岡正臣: "L-代数とストーン代数の特徴づけに関するいくつかの結果について" 宮城教育大学紀要. 33印刷中. (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masaki Takamura: "The numerical radius of an infinite directed regular graph" Mathematical Japonica. 45-2. 337-343 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hideo Takemoto: "On a Saito's problem for the generations of von Neumann algebras by power partial isometries" Nihonkai Mathematical Journ.9-1. 97-104 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hideo Takemoto: "A characterization of the power partially isometric operators" Bulletin of Miyagi Univ.of Education. 33(to appear). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Nobuyuki Nakajima: "On the characterization of De Morgan algebras and Kleene algebras by the Fuzzy core" Journal of Japan Soc.for Fuzzy Tehory and Systems. 9-6. 988-994 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masaomi Morioka: "On a new sufficient condition for a graph to be pancyclic" Bulletin of Miyagi Univ.of Education. 32. 105-110 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masaomi Morioka: "On the certain results concerning L-algebra and Stone algebra" Bulletin of Miyagi Univ.of Education. 33(to appear). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masaki Takamura: "The numerical radius of an infinite directed regular graph" Mathematica Japonica. 45・2. 337-343 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Hideo Takemoto: "On a Saito's problem for the generations of von Neumann algebras by powerpartial isometries" Nihonkai Mathematical Journal. 9・1. 97-104 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Hideo Takemoto: "A characterization of the power partially isometric operators" Bulletin of Miyagi University of Education. 33(印刷中). (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 中島伸之: "不動核によるド・モルガン代数とクリーネ代数の特徴づけ" 日本ファジィ学会誌. 9・6. 988-994 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] 森岡正臣: "グラフが全閉路的であるための新しい十分条件について" 宮城教育大学紀要. 32. 105-110 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] 森岡正臣: "L-代数とストーン代数の特徴づけに関するいくつかの結果について" 宮城教育大学紀要. 33(印刷中). (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Masaki Takamura: "The numerical radius of an infinite directed regular graph" Nathematica Japonica. 45・2. 337-343 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Hideo Takemoto: "On a Saito's problem for the generations of von Neumann algebras by power" Nihonkai Mathematical Journal. 9・1(発表予定). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 中島信之: "不動核によるド・モルガン代数とクリーネ代数の特徴づけ" 日本ファジィ学会誌. 9・6. 988-994 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 森岡正臣: "グラフが全閉路的であるための新しい十分条件について" 宮城教育大学紀要. 32(発表予定). (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi